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I. IIfTRODUCTIOH 

We a t  M . 1  .T. have approached t h e  h i s t o r i c  sub jec t  of ceramic property- 

processing i n t e r a c t i o n s  from a new prospect ive.  

demonstrating through government and i n d u s t r i a l l y  sponsored research  t h a t  

powder processes  and r e s u l t i n g  p rope r t i e s  of ceramic bodies  can be 

dramat ica l ly  improved by us ing  powders having unconventional 

c h a r a c t e r i s t i c s .  The p r i n c i p a l  new f e a t u r e  is r equ i r ing  t h a t  t h e  powders 

have a uniform p a r t i c l e  s i z e  s o  t h a t  t h e  flaw c h a r a c t e r i s t i c s ,  dens i ty  

uni formi ty ,  and  coord ina t ion  number i n  t h e  green bodies  a l l  can be improved 

simultaneously a t  t h e  expense of a s m a l l  decrease i n  green dens i ty  l e v e l .  A 

laser heated gas phase syn thes i s  process  has been developed t o  produce 

nonoxide ceramic powders having the  requi red  c h a r a c t e r i s t i c s .  

We hypothesized and are now 

Defects i n  ceramic bodies  a re  usua l ly  a t t r i b u t a b l e  t o  some s p e c i f i c  

event i n  t h e  processing h i s t o r y  of a component,’ extending from powder 

syn thes i s  through a l l  t h e  handling s t e p s  t o  t h e  f i n a l  conso l ida t ion  i n t o  a 

dens i f i ed  p a r t .  There are many causes f o r  s t r e n g t h  l i m i t i n g  d e f e c t s  and 

t h e i r  e l imina t ion  cont inues to  be t h e  subjec t  of processing research  and 

component development programs. Our approach t o  r e so lv ing  t h i s  problem 

requ i r e s  t h a t  cons t i t uen t  powders s a t i s f y  r i g i d  c r i t e r i a .  * With highly 

s p e c i f i c  powders and t h e  c o r r e c t  handl ing procedures,  it i s  poss ib l e  t o  

cause t h e  ind iv idua l  p a r t i c l e s  t o  a r range  i n  a c l o s e  packed s t r u c t u r e  as 

shown i n  Figure 1 or  more p r a c t i c a l l y  i n  a random c l o s e  packed s t r u c t u r e ’  

which has many of t h e  same a t t r i b u t e s .  

s t r u c t u r e  w i l l  e x h i b i t  p rec i se ly  de f inab le ,  uniform shrinkage t o  t h e o r e t i c a l  

dens i ty  with low f i r i n g  temperatures and s h o r t  f i r i n g  t i m e s .  

d e n s i f i c a t i o n  cyc les  should v i r t u a l l y  e l imina te  g r a i n  growth. 

Bodies having t h i s  unusual i n t e r n a l  

These 

Also,  t h e  
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c h a r a c t e r i s t i c  s i z e  of remaining f l a w s  should be approximately t h a t  of t h e  

p a r t i c l e s  s ince  ind iv idua l  p a r t i c l e  vacancies are t h e  l a r g e s t  probable 

defec t .  

Our research has demonstrated t h a t  t h e  powders must have t h e  fol lowing 

i d e a l  c h s r a c t e r i s t i c s :  

t y p i c a l l y  less t h a n  0.5 pm; ( 2 )  t h e  powder must be f r e e  of agglomerates; 

( 3 )  t h e  p a r t i c l e  diameters must have a narrow range of s i z e s ;  ( 4 )  t h e  

morphology of  the p a r t i c l e s  must be equiaxed, tending toward s p h e r i c a l  

shapes; ( 5 )  t h e  powders must have highly cont ro l led  p u r i t y  with respec t  t o  

contaminants a n d  t o  mul t ip le  polymorphic phases. E i t h e r  with t h e  ordered 

s t r u c t u r e s  shown i n  Figure 1 o r  random c l o s e  packed s t r u c t u r e s , , a  powder 

exh ib i t i ng  these  i d e a l  c h a r a c t e r i s t i c s  should be s i n t e r a b l e  t o  t h e o r e t i c a l  

dens i ty  without r e so r t ing  t o  pressure  o r  add i t ives  and should permit t h e  

f i n a l  g ra in  s t ruc tu re  t o  be highly con t ro l l ab le .  

(1) t h e  powder must have a s m a l l  p a r t i c l e  s i z e ,  

Figure 1. Ordered packing of monodispersed 0.2 ~RII diameter T i 0 2  
spheres. (Barr inger  R e f .  24) 



Because e x i s t i n g  powder synthes is  techniques could not produce powders 

with t h e s e  r e q u i s i t e  c h a r a c t e r i s t i c s ,  w e  developed a laser heated gas phase 

syn thes i s  process .  The laser driven gas phase r e a c t i o n  process  o f f e r s  many 

advantages. 

sur faces  are heated.  

t h e  volume enclosed by t h e  reac tan t  gas stream and t h e  l a s e r  beam. The 

a b i l i t y  t o  m a i n t a i n  s t e e p  temperature g r a d i e n t s  i n  t h e  e f f e c t i v e  thermal  

It i s  a clean process because no p o t e n t i a l l y  contaminating 

The react ion zone is  p r e c i s e l y  def ined,  c o n s i s t i n g  of 

environment, and  thus  a w e l l  defined r eac t ion  zone, a l lows p r e c i s e  c o n t r o l  

of t h e  nuc lea t ion  rate, t h e  growth rate and exposure times, pe rmi t t i ng  t h e  

nuc lea t ion  and growth of very f ine  uniformly s i zed  p a r t i c l e s .  

100% of t h e  r e a c t a n t s  are consumed and t h e  processing energy is p ro je t ed  t o  

be only 2-3 kWhr/kg of powder. 

V i r t u a l l y  

Before s t a r t i n g  t h i s  program, our  research  had emphasized syn thes i s  of 

The f e a s i b i l i t y  of synthes iz ing  S i c  had been S i  and Si3N4.4-7 

demonstrated* bu t  process  condi t ions had t o  be i d e n t i f i e d  t h a t  would r e s u l t  

i n  approximately 1000 8 diameter agglomerate-free p a r t i c l e s .  

11. APPROACH 

This research  program had three t a sks ;  each t o  be c a r r i e d  out  

s equen t i a l ly  during t h e  course of t h e  proposed t h r e e  y e a r  program. 

f i r s t  w e  were t o  de f ine  process condi t ions  lead ing  t o  s u i t a b l e  S i c  powders, 

I n  t h e  

i n  t h e  second we were t o  f i n d  means t o  d i s p e r s e  t h e  powders, and i n  t h e  

t h i r d  w e  were t o  shape and consol idate  powders. 

The f i r s t  y e a r ' s  ob jec t ive  was t o  grow nominally 1000 8 diameter  SIC 

powders having a l l  r e q u i s i t e  c h a r a c t e r i s t i c s .  The most important 

c h a r a c t e r i s t i c s  are freedom from agglomerates and narrow s ize  d i s t r i b u t i o n .  

3 



01,tIcr irnport,rint, c h a r w t e r i s t i c s  are  stoichlornetrsy, c r y s t a l l i n i t y  (amorphous 

or s p e c i f i c  crystalLine phase ) ,  p u r i t y  a n d  shape. 

i n t o  t h e  second and t h i r d  yea r s .  

T h i s  task was continued 

The primary ob jec t ive  f o r  t h e  second yea r  w a s  t o  f ind  means of 

d i spe r s ing  t h e  Sic powders which w i l l  i n s u r e  t h a t  a l l  p a r t i c l e s  are r e l i a b l y  

separated.  

complete1.y removable and should be reasonably f r e e  of both t o x i c i t y  and 

combustion problems. 

powder a f t e r  capture i n  t h e  f i l t e r  assembly.9 

of more recent  ca l cu la t ions  provided t h e  i n i t i a l  basis f o r  s e l e c t i n g  

d i s p e r s a n t s  f o r  S ic .  

The dispers ing l i q u i d  must not contaminate t h e  powders, must be 

W e  had previously inves t iga t ed  t h e  d i spe r s ion  of  S i  

These r e s u l t s  and t h e  r e s u l t s  

Year t h r e e ' s  research introduced shaping and conso l ida t ion  i s s u e s  i n  

conjunction with continued syn thes i s  and dispers ion research t o p i c s .  

In t roduc t ion  o f  subsequent processing s t e p s  required reexamination and 

reopt imizat ion of syn thes i s  and d i spe r s ion  processing s t e p s .  

made by c e n t r i f u g a l  c a s t i n g  and by c o l l o i d a l  p re s s ing  techniques.  

Dens i f i ca t ion  was l imi t ed  t o  p re s su re l e s s  s i n t e r i n g  with B as a s i n t e r i n g  

a id .  

mechanically. 

S i c  p a r t s  were 

Resul t ing p a r t s  were cha rac t e r i zed  mic ros t ruc tu ra l ly  and 

111. S I C  POWDER SYrnESIS 

A. 

The powder syn thes i s  p r o ~ e s s ~ ' ~  employs an o p t i c a l  energy source t o  

Description of the Synthesis Process 

t r a n s f e r  t h e  energy required t o  i n i t i a t e  and s u s t a i n  a chemical r e a c t i o n  i n  

t h e  gas phase. 

throughout t h e  gas volume, a process  t h a t  is  d i s t i n c t  from convent ional  ones 

where hea t  is t ransmit ted from a source t o  t h e  gas molecules by a 

I n  t h i s  process ,  t h e  gas molecules are "self-heated" 

4 



combination of conduction, convection a n d  r a d i a t i v e  processes .  The 

. 

arlvantaKes of t h i s  means of heat ing are freedom from contamination, absence 

of sur faces  t h a t  a c t  as heterogeneous nuc lea t ion  s i t e s ,  a n d  unusual ly  

uniform and  p rec i se  process  cont ro l .  These a t t r i b u t e s  permit s y n t h e s i s  of 

powders w i t h  c h a r a c t e r i s t i c s  t ha t  a r e  i q e a l  f o r  making ceramic bodies.  
. L  

I n  t h e  experimental  apparatus ,  Figure 2 ,  t h e  laser beam enters t h e  

r e a c t i o n  chamber through a K C 1  window and i s  e i t h e r  a r r e s t e d  with a water  

cooled copper block o r  e x i t s  through a second K C 1  window. Power i n t e n s i t i e s  

range from 270-1020 watts/cm2 for t h e  unfocused beam, and up t o  l o 5  

watts/cm2 near t h e  f o c a l  po in t  of a 13 cm l e n s .  

f o r  S i ,  NH3-SiH, f o r  Si3N,, and e i t h e r  CH,-SiH, o r  C$,,-SiH,+ f o r  S i c )  enter 

The r eac t an t  gases  (SiH, 

I)... 
-. 

2*- 

Annular Ar I n l e t  

Figure 2. Schematic of powder synthesis  c e l l .  

Stopper 
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t h e  c e l l  orthogonal t o  t h e  laser beam through R 1.5 mm s ta inless  s t ee l  

nozzle 2-3 mm below t h e  laser beam. A coax ia l  argon stream i s  used t o  

suppress t h e  expansion of t h e  product stream with en t r a ined  p a r t i c l e s ,  so 

t h e s e  p a r t i c l e s  can be c o l l e c t e d  i n  a microf iber  f i l t e r .  

d i r e c t e d  a c r o s s  the KC1 window t o  prevent powder c o l l e c t i o n  t h e r e  and 

p o s s i b l e  breakage. 

Figure 3. 

and C,H,. 

t r a i n  includes a T i  oxygen g e t t e r  t h a t  t y p i c a l l y  achieves < 1 ppm 02. 

Reaction c e l l  pressures ,  ranging; from 0.08 t o  2.0 a t m ,  are maintained by a 

t h r o t t l i n g  valve i n  series between t h e  f i l t e r  and t h e  vacuum pump. 

S i n t e r i n g  enhancing a d d i t i v e s  are introduced i n  t h e  r eac t an t  gas stream; 

e.g. boron as B2H6. 

Argon gas is  

A t y p i c a l  Si3N4 reac t ion  flame is shown schematical ly  i n  

The reactant  gases employed are e l e c t r o n i c  grade SiH4, N H 3 ,  CH4 

Prepurif ied argon is  used as t h e  i n e r t  bu f fe r  gas. The Ar gas 

Figure 3. Physical c h a r a c t e r i s t i c s  of  a t y p i c a l  laser induced Si3N, 
react ion.  The r eac t ion  flame is  shown r e l a t i v e  t o  t h e  gas  
nozzle and laser beam pos i t i ons .  

6 



The powders produced i n  the  react ion zone a r e  c a r r i e d  i n t o  t h e  

c o l l e c t i o n  f i l t e r  by t h e  product and argon gases. With recent  modif icat ions,  

v i r t u a l l y  a l l  of t h e  powder is t ransported t o  t h e  f i l t e r .  Based on mass 

balance,  t h e  l a s e r  induced react ion t y p i c a l l y  converts  85 - 100% of t h e  

r e a c t a n t s  t o  products. After termination of a synthes is  experiment, t h e  

c o l l e c t e d  powders a r e  sealed i n  the microf iber  f i l t e r  under a p o s i t i v e  argon 

pressure;  t h e  f i l t e r  assembly is t h e n  t r a n s f e r r e d  i n t o  a glove box through a 

vacuum antechamber. All post-production handling i s  performed i n  a n  argon 

environment maintained at less than 10 ppm each of O 2  and H20. 

powders oxidize pyrophorical ly  on exposure t o  air .  

None of t h e s e  

Most process v a r i a b l e s  were manipulated ~ y s t e m a t i c a l l y ~ ’ ~  t o  de te rmine  

t h e i r  e f f e c t  on p a r t i c l e  c h a r a c t e r i s t i c s .  The v a r i a b l e s  t h a t  have a d i r e c t  

e f f e c t  on t h e  formation and  growth k i n e t i c s  include reac t ion  temperature,  

hea t ing  rate, p a r t i a l  p re s su re  of r e a c t a n t s ,  t o t a l  p re s su re  and d i l u t i o n  by 

i n e r t  gases. Most of t h e s e  var iables  were manipulated t o  demonstrate t h e i r  

e f f e c t s  on S i c  powder c h a r a c t e r i s t i c s .  

c h a r a c t e r i s t i c s :  s i z e ,  s i z e  d i s t r i b u t i o n ,  shape, s toichiometry,  chemical 

i m p u r i t i e s ,  a n d  c r y s t a l l f n i t y .  

We examined t h e  following powder 

The i d e n t i f i c a t i o n  of t h e  p a r t i c l e  formation process w a s  t h e  primary and 

t h e  essential r e s u l t  of these  s y n t h e s i s  experiments. Our o r i g i n a l  synthes is  

model w a s  b a s i c a l l y  c l a s s i c a l  nucleation and  growth.1° 

success ,  espec ia l ly  i n  describing l o w  temperature,  low pressure r e a c t i o n s  

t h a t  produced small p a r t i c l e s .  

descr ibing process condi t ions leading t o  l a r g e r  S i  p a r t i c l e s  

T h i s  model had some 

However, t h i s  model had s e v e r a l  problems i n  

7 



a n d ,  i n  p a r t i c u l a r ,  w i t h  respec t  t o  S i c  syn thes i s  from a SiH, r eac t an t .  Our 

cu r ren t  S i c  synthesis  model l1 , l2  has a S i  formation and  growth s t e p  followed 

by a carbur iza t ion  s t ep .  

c o l l i s i o n  a n d  coalescence. 

The S i  p a r t i c l e  formation a n d  growth occurs by 

Based on an improved understanding of t h e  ope ra t ive  mechanisms, it w a s  

poss ib l e  t o  increase t h e  mean SIC p a r t i c l e  diameter from nominally looft t o  

over  gooft while r e t a i n i n g  complete d i s p e r s i b i l i t y .  

S i c  powders wi th  diameters up t o  approximately l500ft were produced. 

P a r t i a l l y  d i s p e r s i b l e  

B. Particle Formation Model 

A successfu l  model f o r  t h e  formation of s i l i c o n  p a r t i c l e s  by t h e  laser 

process  must explain how t h e  process va r i ab le s  determine t h e  f i n a l  s i z e  of 

t h e  p a r t i c l e s ,  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  and  t h e  f i n a l  morphology 

d i s t r i b u t i o n  of t h e  p a r t i c l e s .  The las t  poin t  is c r u c i a l  s i n c e  of t h e  t h r e e  

types  of s i l i c o n  p a r t i c l e s ,  (I: 50-200 A agglomerated spheres ,  11: 200- 

1000 ft l inear  aggregates ,  and 111: 

Type I11 powders t h a t  a r e  needed f o r  ceramic processing. 

type  I11 S i  p a r t i c l e s  must form before  ca rbur i za t ion  commenced t o  achieve 

t h e  des i red  Sic powder c h a r a c t e r i s t i c s .  

500-5000 A i s o l a t e d  sphe res )  it is t h e  

W e  found t h a t  t h e  

1, Coalescence Model 

8 ,  Mechanism 

The bas i s  of t h e  coalescence model is  tha t  s i l a n e  r ap id ly  decomposes t o  

e i t h e r  s i l i c o n  o r  d i - s i l i con  p a r t i c l e s  which make l a r g e r  and l a r g e r  

p a r t i c l e s  through c o l l i s i o n s .  11,  * 
t h e  S i  a n d  S i g  spec ies  should be t r e a t e d  as condensed phase p a r t i c l e s  o r  as 

There is a b a s i c  ambiguity i n  whether 
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gas molecules. Schemat€cally,  the reac t ion  can be w r i t t e n  as e i t h e r :  

nSiH, + nSi (g )  + ... +mSi(n/m) 

nSiH, + - S i 2 ( g )  + ... + i ( n / m )  n 
2 o r  

Savanol appl ied Smoluchowski'sl average p a r t i c l e  s i z e  s o l u t i o n  of t h e  

coagulation equat ions t o  t h e  l a se r  process,  and  found t h a t  t h e  agreement w a s  

reasonable. Recently Lee has  used t h e  concept of s e l f - s i m i l a r i t y  i n  t h e  

evolving p a r t i c l e  s i z e  d i s t r i b u t i o n  t o  develop a closed s o l u t i o n  t h a t  

p r e d i c t s  not only t h e  average p a r t i c l e  s i z e  of a n  aerosol ,  but  i t s  

d i s t r i b u t i o n  as For a case where re laxa t ion  t o  s p h e r i c a l  shapes 

i s  f a s t ,  Lee's p r i n c i p l e  r e s u l t s  are t h a t  t h e  average p a r t i c l e  volume 

increases  as t h e  615 power of time, and t h a t  t h e  p a r t i c l e  s i z e  d i s t r i b u t i o n  

rap id ly  converges t o  a log-normal d i s t r i b u t i o n  with a width parameter of 

about 1.3. 

b. Final  Average P a r t i c l e  S i z e  

I n  t h e  coalescence model, p a r t i c l e  growth occurs by two p a r t i c l e s  

c o l l i d i n g  and coalescing.  Usually, coalescence only goes t o  completion i n  

t h e  shor t  time s c a l e  of these  react ions i f  t h e  p a r t i c l e s  are l i q u i d s .  Lee's 

s o l u t i o n  is  f o r  a c o l l e c t i o n  of l i qu id  p a r t i c l e s .  I n  t h e  l a s e r  process ,  

coalescence w i l l  proceed from the  time t h e  p a r t i c l e s  m e l t  u n t i l  t hey  have 

cooled and  s o l i d i f i e d  o r  carburized. Large, cold s o l i d  p a r t i c l e s  w i l l  not 

form s t rong  i n t e r p a r t i c l e  bonds. The f i n a l  average p a r t i c l e  s i z e  is  

t h e r e f o r e  determined i n  p a r t  by t h e  length of t i m e  t h e  unreacted S i  

p a r t i c l e s  a r e  h o t t e r  than t h e  melting point  of s i l i c o n .  

Experimentally t h i s  time i n t e r v a l  i s  related t o  t h e  peak reac t ion  

tenpera ture ,  s ince  inc reas ing  maximum temperatures give longer times above 
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t h e  melting point .  The t i m e  i n t e r v a l  i s  a l s o  r e l a t e d  t o  t h e  v e l o c i t y  of t h e  

r eac t an t s  through t h e  c e l l  s i n c e  t h e  f a s t e r  t h e  r e a c t a n t s  move through t h e  

laser beam, t h e  s h o r t e r  is t h e  t i m e  they spend a t  high temperature.  

The f i n a l  p a r t i c l e  s i z e  a l s o  depends on t h e  c e l l  p re s su re  which 

d e t e r m i n e s  t h e  mass dens i ty  of s i l i c o n  i n  t h e  r eac t ion  zone. Since t h e  

number dens i ty  decreases a t  a rate t h a t  is not s t rong ly  dependent on t h e  mass 

d e n s i t y ,  b u t  r a the r  depends mostly on t h e  number dens i ty  i t s e l f ,  a h igher  

i n i t i a l  mass densi ty  w i l l  r e s u l t  i n  l a r g e r  p a r t i c l e s  being present  a t  any 

given t i m e .  

zone temperatures ,  which r e s u l t  i n  l a r g e r  average p a r t i c l e  s i z e s ,  as 

described above. 

Higher c e l l  p re s su res  a l s o  usua l ly  produce h igher  peak r eac t ion  

C .  P a r t i c l e  S i z e  Distribution 

Lee 's  so lu t ion  p r e d i c t s  t h e  u l t ima te  emergence of a log-normal s i z e  

d i s t r i b u t i o n  w i t h  a w i d t h  parameter approximately equal  t o  1.3. The l a s e r  

process would produce such a narrow d i s t r i b u t i o n  only i f  a l l  of t h e  flow 

streams remained above 1410°C f o r  t h e  same length  of t ime and they had t h e  

same composition. 

r eac t ion  zone is  co lder  than t h e  c e n t e r  and  is d i l u t e d  by t h e  annular  stream. 

Therefore l a r g e r  p a r t i c l e s  form i n  t h e  c e n t e r  of t h e  r eac t ion  zone, and 

smal le r  ones a t  the  edges. These e f f e c t s  and a non uniform v e l o c i t y  r e s u l t  

i n  a broader  d i s t r i b u t i o n ;  t y p i c a l  width parameters are around 1.7. 

Unfor tuna te ly ,  a t  t h e  present  t ime t h e  o u t e r  edge of the  

2. Formstion of Sic Powder8 by Carburiz8tion of Si Particles 

We have developed increas ing  c l e a r  evidence tha t  Sic p a r t i c l e s  form i n  

gaseous mixture of s i lane and a hydrocarbon through a two-step r eac t ion ;  
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s i l i c o n  p a r t i c l e s  form from silane pyro lys i s  products ,  and then ca rbur i ze  t o  

produce t h e  s i l i c o n  ca rb ide  p a r t i c l e s .  This s e c t i o n  desc r ibes  t h e  

ca rbur i za t ion  mechanism of s i l i c o n  p a r t i c l e s .  Conversion rates of s i l i c o n  

p a r t i c l e s  t o  S i c  c a l c u l a t e d  assuming two pos tu l a t ed  r a t e - l i m i t i n g  mechanisms 

are compared with experimental  r e s u l t s .  

a. Background 

T h e r e  are several p o t e n t i a l  rate c o n t r o l l i n g  steps f o r  t h e  c a r b u r i z a t i o n  

of s i l i c o n  p a r t i c l e s .  The most l i k e l y  were considered t o  be hydrocarbon 

pyro lys i s  o r  d i f f u s i o n  of S i  or C through t h e  S i c  product l aye r .  Methane and 

ethylene were used f o r  S i c  synthesis  with s i lane.  Pyrolysis  k i n e t i c s  of  both 

gases are reviewed. 

Despite t h e  complexity of  pyrolysis  k i n e t i c s ,  methane's o v e r a l l  r eac t ion  

ra te  is bel ieved t o  be represented by t h e  f i r s t - o r d e r  i n i t i a t i o n  s t e p :  

CH,+ CH3+ H e  

The rate of py ro lys i s  i s  conveniently i l l u s t r a t e d  using a ha l f  l i f e  (Table 1) 

f o r  t h e  r eac t ion .  

Ethylene p y r o l y s i s  proceeds through p a r a l l e l  channels t o  form C 2 H 2  and 

As t hese  r eac t ions  a r e  second-order, t h e  rate depends on t h e  i n i t i a l  C2H3. 

concentrat ion.  For comparison, an equivalent  h a l f  l i f e  of e thylene a t  t h e  

condi t ions used i n  our experiments i s  l i s t e d  i n  Table 1 along with t h e  h a l f  

l i v e s  of  methane a n d  si lane.  Ethylene e x h i b i t s  a n  intermediate  py ro lys i s  

rate between methane and s i lane.  
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T a b l e  1. 

1000 
1300 
1600 
1900 

Decomposition h a l f - l i v e s  of e thylene,  methane and s i lane  ( s e c ) .  

125 
6 . 2 ~ 1 0 - ~  
2 . 1x10- 3 

2 . 0 9 ~ 1 0 - ~  

1 C2H4 
Temp ( K ) Skinner '  

C e l l  Pressure ( a t m )  
Laser Power I n t e n s i t y  ( W / c m 2 )  
S i l ane  Flow Rate (cc /min)  

R e a c t i o n  Temperature (K) 
G a s  Mixture Stoichiometry ( C  /S i  ) 

A 

0.2 - 0.95 
2,500 - 24,000 
10 - 50 
0.86 - 2.2 
1330 - 2210 

Except g ra in  boundary d i f f u s i o n  

CH4 
Chen 

1.82~107 
190 

0.146 
1.08~10- 

of S i ,  d i f f u s i o n  

C through d i f f e r e n t  paths  have been reported.  Carbon 

4.2~10-5 
9 . 6 ~ 1 0 ' ~  

9x10- 

c o e f f i c i e n t s  of S i  and 

g r a i n  boundary 

d i f fus ion  i s  much f a s t e r  than e i t h e r  of t h e  l a t t i ce  d i f f u s i o n  paths .  

Although S i  g r a i n  boundary d i f f u s i o n  c o e f f i c i e n t s  are not known, t h e  

r e l a t i v e  values  can be deduced. Carburizat ion of s i l i c o n  substrates by 

flowing hydrocarbons r evea l s  t h a t  material t r a n s p o r t  through t h e  product 

l a y e r  occurs by s i l i c o n  g ra in  boundary d i f fus ion .  Thus, s i l i con  g r a i n  

boundary d i f fus ion  is faster than t h a t  of carbon. 

b. Experimental R t B U l t 8  

Experiments were performed using t h e  r eac t ion  c e l l  shown i n  Figure 2 

and 180 W focused CO, laser beam. 

were c o n t r o l l e d  by mass-flow c o n t r o l l e r s .  The ranges of i n v e s t i g a t e d  

Both s i lane and hydrocarbon flow rates 

process condi t ions are summarized i n  Table 2. 

Table 2. Range of process condi t ions inves t iga t ed  f o r  S i c  powder s y n t h e s i s  
s tud ie s .  c 



1) Methane: S i lane  System 

A t  0.95 a t m  p re s su re  a n d  6000 W/cm* laser i n t e n s i t y ,  t h e  r eac t ion  

temperature  increased ab rup t ly  with decreasing r eac t an t  gas flow rates. 

This  phenomenon i s  r e f e r r e d  t o  as " ign i t ion"  (F igure  4 ) .  

zones contain two regions.  The lower edge of t h e  r eac t ion  zone had a 

crescent  shaped region having a n  orange co lo r ,  which is  c a l l e d  a cusp. The 

cusp is  located below t h e  C02 l a se r  beam. 

r eac t ion  zone becomes highly luminous at t h e  p o s i t i o n  of t h e  C O P  laser beam. 

T h i s  point  corresponds t o  the  maximum temperature .  Other than  temperature ,  

t h e  upper region appeared smooth and continuous throughout t h e  remainder of 

t h e  r eac t ion  zone. Unignited react ion zones do not e x h i b i t  a cusp. 

I g n i t e d  r eac t ion  

The second, upper region of t h e  

The t ransmi t tance  of a He-Ne l a s e r  beam throughout t h e  unigni ted  

r e a c t i o n  zone decreased smoothly and monotonically with t h e  d i s t ance  above 

t h e  r eac t an t  nozz le .  I n  c o n t r a s t ,  t h e  t ransmi t tance  of t h e  i g n i t e d  plume 

showed a minimum a t  t h e  pos i t ion  of t h e  cusp (Figure 5 ) .  

The e f f e c t  of t h e  gas-mixture s toichiometry w a s  examined only f o r  

i g n i t e d  r eac t ions .  Excess-methane mixtures w e r e  used t o  ob ta in  

s to i ch iomet r i c  S i c  powder. The reac t ion  temperature  exh ib i t ed  a maximum at  

C/Si r a t i o  of 1.27. This maximum is bel ieved due t o  t h e  competing e f f e c t s  of 

a n  endothermic methane py ro lys i s  reac t ion  a n d  a n  exothermic r eac t ion  t o  form 

S i c .  The amount of S i c  i n  t h e  powders increased with inc reas ing  C/Si ratio 

of Ras mixture; it neared 100% with gas C/Si r a t i o  of 1.67 (F igure  6 ) .  

X-ray d i f f r a c t i o n  ana lys i s  revealed t h a t  powders produced from unigni ted  

r eac t ions  cons is ted  pr imar i ly  of s i l i c o n  and a small amount of S i c  (20%).  

I g n i t e d  r eac t ions  produced powders conta in ing  a much h igher  proport ion of S i c  

(70%) 
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F i g u r e  7. TEM photomicrograph  of a n  i g n i t e d - r e a c t i o n  SiH4-CH4 powder  
s y n t h e s i z e d  a t  0.95 atm a n d  1870K. 
are o b s e r v e d  a n d  are n o t  s t r o n g l y  agg lomera ted .  

Particles larger t.han 1000 A 

F i g u r e  8. TEM photomicrograph  of powder c o n t a i n i n g  h o l l o w  p a r t i c l e s  
s y n t h e s i z e d  a t  0.95 a t m  and  1820K w i t h  S i H ,  1 5  cc /min  a n d  CHq 25 
cc Irnin. 
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The unignited r e a c t i o n  powders were mostly comprised Of agglomerated, 

medium s i z e d  (about 500 A )  p a r t i c l e s  which were s i l i c o n .  The i g n i t e d  

reac t ion  powders contained considerable  numbers of l a rge  p a r t i c l e s  (> lo00  A )  

similar i n  s i z e  t o  l a rge  s i l i c o n  p a r t i c l e s  which were observed i n  t h e  high- 

temperature s i l i c o n  synthes is  runs (Tmax = 1300°C). 

are p o l y c r y s t a l l i n e  a n d  are not agglomerated (Figure 7 ) .  

These l a rge  p a r t i c l e s  

P a r t i c l e  s i z e  w a s  measured by TEM a n d  BET. P a r t i c l e  s i z e  decreased with 

increas ing  C/Si r a t i o  d e s p i t e  t h e  increase  of reac t ion  temperature.  A 

remarkable f ea tu re  w a s  t he  emergence of hollow p a r t i c l e s  with inc reas ing  C/Si 

r a t i o s .  The i n t e r i o r s  of these p a r t i c l e s  were more t r anspa ren t  t o  t h e  TEM 

beam t h a n  t h e i r  outer boundaries. H o l l o w  p a r t i c l e s  e x i s t e d  only i n  the  

medium s i z e  range (about 500 A ) .  

diameter were observed (Fi-re 8) .  

No hollow p a r t i c l e s  l a r g e r  than 1000 A i n  

2) Ethylene: Silane System 

S i c  powders were a l s o  synthesized us ing  ethylene as a carbon source.  

As described i n  the background sec t ion ,  ethylene decomposes f a s t e r  than 

methane b u t  slower t h a n  s i l a n e .  The hal f  l i f e  of e thylene a t  temperatures 

of i n t e r e s t  is approximately one hundredth t h a t  of methane. 

An i g n i t i o n  phenomenon w a s  a l s o  observed w i t h  t h e  ethylene-silane 

system; however, t h e  i g n i t i o n  condi t ions d i f f e r e d  from t h e  methane-silane 

system. 

s i l a n e  and  6000 W/cm2 of l a s e r  i n t e n s i t y .  

t h e r e  w a s  no h y s t e r e s i s  i n  t h e  process condi t ions tha t  produce i g n i t i o n .  The 

fully i g n i t e d  a n d  unigni ted reac t ion  zones were ind i s t ingu i shab le  from t h e  

corresponding methane-silane reac t ion  zones. 

fu l ly - ign i t ed  react ion zones. 

I g n i t i o n  s tar ts  with condi t ions as low as 0.5 a t m ,  20 cc/min of 

Unlike the  methane-silane system, 

A cusp w a s  observed i n  t h e  
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Gas s to ich iometr ic  e f f e c t s  were examined mainly i n  t h e  excess-ethylene 

regime. For fu l ly - ign i t ed  reac t ions ,  excess e thylene usua l ly  produced excess 

carbon i n  t h e  powders, s ince  nearly pure S i c  w a s  obtained from s to ich iometr ic  

gas mixtures. For unigni ted reac t ions ,  almost pure S i c  powder w a s  

synthesized by adding excess ethylene. Reaction temperature increased with 

excess e thylene up t o  a maximum of 1840°C. This temperature l e v e l  is h igher  

than  t h a t  of t h e  maximum observed f o r  t h e  methane-silane system; t h e  

d i f f e rence  is explained by t h e  exothermisity of e thylene pyro lys i s .  P a r t i c l e  

s i z e  decreased w i t h  increas ing  C/Si r a t i o  i n  t h e  gas mixtures as w a s  t h e  case 

i n  t h e  methane-silane system. Hollow p a r t i c l e s  were observed with excess 

carbon i n  t h e  gas mixture as was observed f o r  t h e  methane-silane system. 

X-ray d i f f r a c t i o n  revealed t h a t  powders synthesized from a 

s to ich iometr ic  gas mixture under f u l l y  ign i t ed  condi t ions consis ted of more 

than 90% S i c  unl ike  powders synthesized from t h e  methane-silane system which 

s t i l l  had 30% f r e e  s i l i c o n .  A par t i a l ly - ign i t ed  r eac t ion  y ie lded  75% S i c  a t  

0.45 a t m  and 1250°C. Even unignited reac t ions  produced more S ic  than t h e  

methane system. 

Figure 9. TEM photomicrograph of t h e  igni ted-react ion SiH,-C$, powder 
synthesized a t  0.9 atm a n d  l 9 2 O K .  
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TEM observations showed d i f f e rences  between t h e  microstructures  of 

ethylene a n d  methane derived powders. The most remarkable d i f f e r e n c e  w a s  a n  

absence of  t h e  large p a r t i c l e s  (>lo00 A ) ;  t hus  t h e  average p a r t i c l e  s i z e  was 

smaller than t h a t  of corresponding methane derived powder. P a r t i c l e s  i n  t h e  

ethylene derived powder (Figure 9 )  appeared t o  be more agglomerated than 

those of  t h e  methane der ived powder. 

c .  Dlscusalon 

As described in t h e  background s e c t i o n ,  t h e  s i l i c o n  p a r t i c l e  

ca rbur i za t ion  r a t e  is bel ieved t o  be con t ro l l ed  e i t h e r  by t h e  hydrocarbon 

pyro lys i s  rate o r  by t h e  rate S i  d i f f u s e s  through t h e  S i c  product l aye r .  

Observed rates were compared with c a l c u l a t e d  values t o  i d e n t i f y  t h e  o p e r a t i v e  

rate c o n t r o l l i n g  mechanism. 11 

1) Solid State Diff’usion 

The time fo r  convert ing a s i l i c o n  sphere with r ad ius  R t o  S i c  with 

th i ckness  of ( R  - rc) is:  

where r 

D is  t h e  d i f fus ion  c o e f f i c i e n t  of t h e  f a s t  spec ie s ,  and AC is t h e  

concentrat ion gradient between p a r t i c l e  su r face  and Si-Sic i n t e r f a c e .  For 

t h e  i g n i t e d  react ion,  t h e  c a l c u l a t i o n  r e s u l t  using car’tjon g r a i n  boundbry 

d i f f u s i o n  c o e f f i c i e n t  i s  higher  than t h e  experimental  r e s u l t  (Figure 10). 

Considering tha t  s i l i c o n  gra in  boundary d i f f u s i o n  i s  faster than  t h a t  of 

carbon, t h e  difference between t h e  c a l c u l a t e d  value and t h e  experimental  

is t h e  remaining s i l i c o n  core r ad ius ,  pB is t h e  dens i ty  of s i l i c o n ,  
C 
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r e s u l t  w i L l  d i f f e r  more. Therefore ,  t h e  r a t e - l imi t ing  s t e p  is  not s o l i d -  

s t a t e  d i f f u s i o n  for  s to i ch iomet r i c  i g n i t e d  r eac t ions .  

2) Methane Pyrolysis 

The second c a l c u l a t i o n  assumes t h a t  methane py ro lys i s  is rate 

con t ro l l i ng .  Assuming t h a t  decomposed methane immediately reacts with 

s i l i c o n ,  t h e  conversion r a t i o  t o  S i c ,  x,  is  descr ibed by: 

x = m(l-exp(-kt))  

where m is t h e  r a t i o  of methane t o  s i l a n e  and k is  t h e  rate constant  fo r  

methane pyrolysis .  Figure 11 shows t h a t  t h e  c a l c u l a t i o n s  ag ree  with t h e  

experimental  results. Consequently, f o r  a s to i ch iomet r i c  gas mixture,  t h e  

o v e r a l l  r a t e - l imi t ing  s t e p  is  most l i k e l y  t o  be t h e  methane py ro lys i s  rate. 

3 )  Hollow Particles 

With increasing c/Si r a t i o  i n  t h e  gas mixture, t h e  o v e r a l l  rate 

c o n t r o l l i n g  s t e p  probably changes t o  d i f f u s i o n  c o n t r o l  as hollow p a r t i c l e s  

appear. 

s t e p  is outward d i f f u s i o n  of s i l i con  through t h e  S i c  product l aye r .  

t h e  use  of a rapidly decomposing hydrocarbon such as ethylene should t end  t o  

form hollow p a r t i c l e  as is t h e  case with excess methane. 

The exis tance of hollow p a r t i c l e s  i n d i c a t e s  t h a t  t h e  r a t e - l i m i t i n g  

Also,  

Rapid hydrocarbon pyro lys i s  and ca rbur i za t ion  a t  l o w  temperatures i s  

expected t o  prevent s i l i c o n  p a r t i c l e s  from growing by coalesence. Thus, 

adding excess methane or r ep lac ing  it with ethylene should produce smaller, 

agglomerated SIC p a r t i c l e s .  This  w a s  observed i n  t h e  experiments. 
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d. Approach for Producing an I d e a l  Powder 

The understanding of t h e  formation mechanism provided a r a t i o n a l  

b a s i s  f o r  producing an i d e a l  S i c  powder by t h i s  process.  S i l i c o n  p a r t i c l e s  

must grow t o  f i n a l  dimensions before  ca rbur i za t ion  begins,  s i n c e  S i c  

p a r t i c l e s  cannot coalesce.  The s i l l c o n  p a r t i c l e s  must t h e r e f o r e  grow before 

t h e  py ro lys i s  of t h e  hydrocarbon becomes rapid,  so a slowly decomposing 

h-ydrocarbon i s  des i r ab le ,  t h a t  i s ,  methane.  An "igni ted" r e a c t i o n  condi t ion 

must be achieved with t h e  smallest amount of methane t h a t  w i l l  y i e l d  

s to i ch iomet r i c  powder. If poss ib l e ,  it would be  b e s t  t o  add t h e  hydrocarbon 

i n t o  t h e  stream a f t e r  appropr i a t e  growth of t h e  s i l i c o n  p a r t i c l e s .  

C .  Si l icon Carbide Powders: Current Status 

We are now rout inely producing s i g n i f i c a n t l y  improved s i l i c o n  ca rb ide  

powders us ing  t h e  approach described above. The new powders are l a r g e r  

(average p a r t i c l e  diameter of - 9 O O A )  and have f a i r l y  narrow p a r t i c l e  s i z e  

d i s t r i b u t i o n s  (log-normal width parameter of around 1.6). The p a r t i c l e s  are 

s p h e r i c a l ,  non agglomerated, and can be made s to i ch iomet r i c ,  o r  i f  des i r ed ,  

1-2% carbon r i c h .  

d e n s i t i e s  of 60% o r  more. 

S i c  powders which were cha rac t e r i zed  by smaller s i z e s ,  hard agglomerates, 

and imprecisely con t ro l l ed  stoichiometry.  

This  powder d i spe r ses  w e l l ,  and can be packed t o  green 

This new powder c o n t r a s t s  s t rong ly  with i n i t i a l  

We can explain t h e  improvement in'powder p r o p e r t i e s  u s ing  t h e  

co l l i s ion /coa le scence  model and t h e  two-step model. 

l a r g e r  because they are produced a t  h i g h e r  p re s su res ,  with correspondingly 

higher  i n i t l a l  s i l i c o n  densi ty .  A t  these higher  p re s su res ,  l a r g e r  s i l i c o n  

The new powders are 
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p a r t i c l e s  grow before  ca rbur i za t ion  begins, so t h e  f i n a l  Sic p a r t i c l e s  are 

l a r g e r .  T h i s  is only poss ib l e  if methane i s  used f o r  t he  carbon source,  as 

explained above. 

The p a r t i c l e  s i z e  d i s t r i b u t i o n  i s  more narrow because a l l  of t h e  flow 

streams pass  through a n  i n t e n s e  port ion of t h e  laser beam. Previously,  only 

180 w a t t s  of l a s e r  power was ava i lab le .  

focussed t o  R 2 mm diameter spo t .  Some of t h e  r eac t an t  gas t h e r e f o r e  flowed 

around t h e  beam. These flow streams produced very d i f f e r e n t  powder from t h e  

flow streams t h a t  experienced t h e  high i n t e n s i t y  of t h e  focussed laser beam. 

With t h e  p re sen t  appara tus ,  w e  have up t o  400 w a t t s  a v a i k b l e .  

focussed t o  a 2 mm high by 5 mm wide e l i p s e ,  which is wide enough t h a t  a l l  

of t h e  flow streams pass  through in tense  l a s e r  i r r a d i a t i o n .  The p a r t i c l e  

s i z e  d i s t r i b u t i o n  would be even more narrow i f  t h e  laser i n t e n s i t y  could be 

made more uniform ac ross  i t s  5 mm width. 

To achieve i g n i t i o n ,  t h e  l a s e r  w a s  

The beam i s  

W e  a r e  now making s to i ch iomet r i c  (or  on demand carbon r i c h )  S i c  because 

all of t h e  flow streams are being ign i ted .  The p a r t i c l e s  are not 

agglomerated because t h e  s i l i c o n  growth zone is  d i s t i n c t  from t h e  

ca rbur i za t ion  zone. Once carbur iza t ion  begins ,  t h e  p a r t i c l e s  ge t  coated 

w i t h  a layer of S i c  t h a t  prevents  c o l l i d i n g  p a r t i c l e s  from s t i c k i n g  s i n c e  

even a t  1.800"~ t h e  S i c  is s o l i d .  I n  t h i s  way, t h e  co l l i s ion /coa le scence  

model r ema ins  cons i s t en t  w i t h  a 10008, average p a r t i c l e  s i z e .  

r eac t ions  a t  similar f l o w  r a t e s  and pressures  produce 30013A powders. 

i s  because p a r t i c l e  growth cont inues u n t i l  t h e  p a r t i c l e s  flow out  of t h e  

laser beam a n d  cool  below 1 4 1 O 0 C ,  t h e  s i l i c o n  melting point .  

F i n a l l y ,  t h e  improved d ispers ion  and  packing behavior of t h e  new powder 

Pure s i lane 

This  

i s  a consequence of t h e  above l i s t e d  p rope r t i e s .  The p a r t i c l e s  are l a r g e  
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e n o i i K h  thqt. € n t e r p a r t i c l o  forces  can he overcome us in^ t h e  proper 

d i spe r san t s .  Slnce t h e r e  a r e  no h a r d  aRRlornerates, t he  powders can be 

pressed t o  high green d e n s i t i e s .  The excess carbon content  can be 

con t ro l l ed  f o r  s i n t e r i n g  s t u d i e s .  We have succeeded i n  developing t h e  

s i l i c o n  ca rb ide  l a s e r  syn thes i s  process i n t o  a source of unique, high 

q u a l i t y  s i l i c o n  carb ide  powder. 

I V .  DISPERSION OF SIC POWDER 

A. Introduction 

To produce f law-free,  high q u a l i t y  ceramics c o n t r o l  of a l l  process ing  

s t e p s  inc luding  powder prepara t ion ,  f a b r i c a t i o n ,  s i n t e r i n g  and f i n i s h i n g  is 

required.  Powder prepara t ion  techniques normally inc lude  gr inding  and 

p u r i f i c a t i o n  of Acheson S i c .  Much work has been done", 20, 21 c h a r a c t e r i z i n g  

t h e  flaws assoc ia ted  w i t h  ceramic p a r t s  manufactured from comminuted s i l i c o n  

carb ide  powders with broad p a r t i c l e  s i z e  d i s t r i b u t i o n s .  It appears  t h a t  

t h i s  approach f a l l s  s h o r t  of t h e  goa l  of high q u a l i t y  p a r t s .  

has demonstrated t h a t  high green d e n s i t i e s ,  reduced s i n t e r i n g  cyc les  and 

improved micros t ruc tures  a r e  poss ib l e  by u t i l i z i n g  submicron Sic p a r t i c l e s  

with a narrow s i ze  d i s t r i b u t i o n .  H i s  f a i l u r e  t o  deomonstrate improved 

p rope r t i e s  may have been due t o  depar tures  from i d e a l i t y 2 3  because t h e s e  

powders were non-spherical a n d  impure. 

capable of producing S i c  powders t h a t  adhere more c l o s e l y  t o  t h e  concept of 

i d e a l i t y .  

Hermansson22 

The laser syn thes i s  process6 is 

Highly per fec t  green compacts have been formed from " idea l"  o x i d e  

It appears  p o s s i b l e  t h a t  t h i s  powders dispersed i n  a l i qu id  medium24. 

approach may be explo i ted  by applying t h e  commercially popular  techniques of 
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s l i p  casting; and i n j e c t i o n  molding to  d i spe r s ions  of i d e a l  S i c  powders. The 

advantages of t h e s e  techniques include formation of complex shapes and high 

dens i ty  green compacts. Whether these f a b r i c a t i o n  techniques can be used t o  

process laser synthesized SIC powder depends f irst  on developing d i spe r s ing  

systems. 

Dispersina systems m u s t  preserve p u r i t y  and must f a c i l i t a t e  processing 

at all s t ages .  The formation of an oxide l a y e r  on S i c  powder has been 

observed2’ f o r  aqueous powder dispersions.  

l e v e l s  >0.2 w t . %  degrade t h e  high temperature s t r e n g t h  of S i c .  I n  a d d i t i o n ,  

t h e  processing of  submicron s i l i c o n  bearing; ceramic powders i n  aqueous media 

i s  hampered by t h e  formation of si l ica slimes which prevent t h e  achievement 

of high green dens i ty  compacts.27 

dispersed i n  non-aqueous mediums. Of t h e s e ,  t h e  obvious contaminant bear ing 

systems were not considered (e.g., a l k a l i ,  s u l f u r  and phosphorus con ta in ing  

compounds). 

d i spe r s ing  capabi li t it es . 

It has been shown26 t h a t  oxygen 

For these reasons S i c  is  normally 

The remaininR systems were evaluated f o r  t h e i r  powder 

For nearly p e r f e c t  microstructures t o  be formed from a d i spe r s ion  of  

ceramic p a r t i c l e s ,  t h e  p a r t i c l e s  must remain i s o l a t e d  i n  t h e  medium u n t i l  

added s i n g l e l y  t o  t h e  forming compact. The f i r s t  c r i t e r i o n  t o  be m e t  i s  

t h a t  t h e  medium w e t  t h e  powders 28, 29. 

a g g i t a t i o n  i s  s u f f i c i e n t  t o  break up f l o c s  formed i n  t h e  dry powder. 

U l t r a son ica t ion  is  an e x c e l l e n t  way of doing t h i s 3 0 , 3 1 .  F i n a l l y  t h e  

p a r t i c l e  must be kept i s o l a t e d  i n  the l i q u i d  medium by i n t e r p a r t i c l e  

repuls ion.  

e i t he r  of two approaches, coulombic s t a b i l i z a t i o n  o r  S t e r i c  s t a b i l i z a t i o n .  

Coulombic s t a b i l i z a t i o n  is effected by t h e  repuls ion between p a r t i c l e s  

Secondly, normal mechanical 

Such a dispers ion is said t o  be s t a b l e  and may be achieved by 
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r e s u l t i n g  from the i n t e r a c t i o n  of overlapping ion ic  charge clouds (double 

layers )  during p a r t i c l e - p a r t i c l e  approach3*. 

t h e  inc rease  i n  f r e e  energy a s soc ia t ed  with t h e  i n t e r p e n e t r a t i o n  of 

marginally soluble  macromolecules adsorbed on t h e  p a r t i c l e  s u r f a c e  33.  

S t e r i c  s t a b i l i z a t i o n  is due t o  

This chapter dea l s  with t h e s e  dispers ion i s sues .  

B. Dispersion i n  Won-Aqueous, Pure So lvents  

S i l i c o n  carbide powders synthesized from laser dr iven r eac t ions  have 

extremely pure su r faces  because of t h e  syn thes i s  process and handling 

procedures. Consequently, t h e  su r faces  of laser s i l i c o n  ca rb ide  powders 

d i f f e r  from those of commercial s i l i c o n  ca rb ide  powders, which are gene ra l ly  

known t o  have s l i g h t l y  oxidized l a y e r s  on t h e i r  su r f aces .  Because t h e  

d i spe r s ion  c h a r a c t e r i s t i c s  of powders are s t rong ly  dependent on t h e i r  

s u r f a c e  c h a r a c t e r i s t i c s ,  t h e  laser s i l i c o n  ca rb ide  powders are expected t o  

behave d i f f e r e n t l y  from commercial s i l i c o n  ca rb ide  powders. Understanding 

d i spe r s ion  c h a r a c t e r i s t i c s  i n  pure so lven t s  i s  needed not only f o r  choosing 

a n  e f f e c t i v e  pure s o l v e n t ,  but  a l s o  f o r  i d e n t i f y i n g  a good d i spe r san t .  

The dispersion C h a r a c t e r i s t i c s  of pure s i l i c o n  powders made from laser 

heated SiH, were previously s tudied '  and a sce r t a ined  t o  depend on t h e  

d i e l e c t r i c  constant of so lven t s .  This research concentrated o n  pure solvent  

systems i n  t h e  absence of  dispersant^^^ t o  confirm t h e i r  a p p l i c a b i l i t y  t o  

f i n e ,  pure s i l i c o n  carbide powders made by t h e  laser s y n t h e s i s  process and 

t o  understand the powders' d i spe r s ion  c h a r a c t e r i s t i c s .  



1. Experiments 

a. Materials 

Three types of pure laser synthesized S i c  powder made under d i f f e r e n t  

condi t ions ,  one commercial S i c  powder ( I R I D E N  BETARANDOM ULTRAFINE), a n d  a n  

oxidized l a s e r  powder were used i n  t h i s  study. The i r  syn thes i s  condi t ions  

a r e  given i n  Table 3 and c h a r a c t e r i s t i c s  a r e  summarized i n  Table 4. 

Oxidized l a s e r  S i c  powder was prepared by hea t ing  l a s e r  S i c  powder LO14 

i n  a i r  a t  6oo0c f o r  5 hours a f t e r  breaking t h e  s o f t  agglomerates with a 30 

m i n u t e  exposure t o  a 40 w a t t  u l t r a son ic  probe with t h e  powders d ispersed  i n  

i sopropyl  a lcohol .  

s i n g l e  poin t  BET, TEM, XRD and FTIR. 

t h e  same su r face  a r e a ,  morphology and c r y s t a l  phase as t h e  pure l a s e r  powder 

L014. 

p a r t i c l e  sur faces .  

The oxidized l a se r  S i c  powder w a s  cha rac t e r i zed  with 

The oxidized powder had approximately 

The only d i f f e r e n c e  w a s  t h e  presence of a n  oxidized l a y e r  on t h e  

Commercially a v a i l a b l e  grades of organic  so lvent  w e r ?  used i n  t h i s  

s tudy (Table 5 ) .  These so lven t s  represent commonly a v a i l a b l e  organic  

f a m i l i e s ,  inc luding  e l i p h a t i c  and aromatic hydrocarbons, ch lo r ides ,  e t h e r s ,  

ke tones ,  e s t e r s ,  a l coho l s ,  aldehydes, carboxyl ic  a c i d s ,  amines  and water. 

The s o l v e n t s  were d r i e d  with a 3A molecular s ieve .  

b. Dispersion Test 

Simple screening  tests a n d  cen t r i fuga l  ca s t ings  were used t o  determine 

t h e  s t a b i l i t y  of t h e  S i c  powders d i s p e r s e d  i n  t h e  inves t iga t ed  so lven t s .  34 

Prepara t ion  of suspensions for  screening tests w a s  conducted under a 

n i t rogen  atmosphere us ing  a glove box. Af te r  a small amount of powder (10mg) 
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T a b l e  3. S y n t h e s i s  c o n d i t i o n s  for powders  u s e d  i n  p u r e  s o l v e n t  
d i s p e r s i o n  s t u d i e s .  

L 

Run Number Reactant Laser React i o n  
(Carbon ) Power (w) Temp ("C) 

BO38 E t h y l e n e  150 1650 
~ 0 6 0  Methane 150 1680 
LO14 Methane 500 1830 

LASER-POWDERS 
BO38 BO60 LO14 

44.9 44.3 22.4 

41.5 42.1 83.1 

nar row 
spherical 

p u r e  

B B 8 

T a b l e  4. C h a r a c t e r i s t i c s  of powders  u s e d  i n  pure s o l v e n t  
d i s p e r s i o n  s t u d i e s .  

COMMERCIAL OXIDIZED 
LO14 

19.4 23 -3 

95 .o 80 .o 

wide  na r row 
i rregular s p h e r i c a l  
s l i g h t l y  s l i g h t l y  
o x i d i z e d  o x i d i z e d  

8 B 

CHARACTERISTIC 

SPECIFIC SURFACE 

BET PARTICLE 
SIZE (nm) 

SIZE DISTRIBUTION 
MORPHOLOGY 
SURFACE 

AREA ( m 2 / g )  

I PHASE 
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Table 5. Results of screening tests and centrifugal casting tests for pure 
solvent dispersion studies. 

SOLVENT D I SPERS I B I L I T Y  PACKING DENSITY % H.B. 
LO14 COMMERICAL INDEX - PURE OXIDIZED BO38 B O 6 0  - --- 

HYDROCARBONS 
1 hexane 
2 toluene 

CHLORIDES 
3 methylene chloride 
4 chloroform 
5 carbon tetrachloride 
6 1,2-dichloroethane 
7 trichloroethylene 
8 chlorobenzene 

CYANIDE 
9 acetonitrile 

ETHERS 
10 isopenthyl ether 
1 1  tetrahydrofuran 
12 dioxane 

KETONES 
13 acetone 
14 2-bu t anone 
15 2-heptanone 

ESTERS 
16 ethyl formate 
17 ethyl acetate 

ALDEHYDE 
18 benzaldehyde 

ALCOHOLS 
19 methyl alcohol 
20 ethyl alcohol 
21 n-propyl alcohol 
22 2-propyl alcohol 
23 2-furfuryl alcohol 
24 benzyl alcohol 
25 n-octyl alcohol 
26 ethylene glycol 

AMINE 
27 propylamine 

CARBOXYLIC ACID 
28 propionic acid 
29 n-octanoic acid 
30 oleic acid 

INORGANIC 
31 water 

P 
P 

G 
G 
P 
G 
P 
P 

G 

G 
G 
P 

G 
c 
P 

P 
G 

P 

P 
P 
P 
P 
P 
P 
G 
G 

P 

G 
G 

VG 

F 

P 
P 

G 
G 
P 
G 
P 
P 

G 

P 
G 
P 

G 
G 
G 

VG 
G 

VG 

VG 
VG 
VG 
VG 
VG 
VG 
VG 
VG 

VG 

P 
VG 

G 

G 

11.9 16.4 20.5 
12.8 19.5 23.6 

11.8 17.2 23.9 
14.0 17.0 26.8 
11.3 16.7 25.9 
14.0 19.8 25.6 
12.8 17.7 25.9 
13.9 18.7 26.2 

11.1 15.8 25.1 

- 25.5 29.0 
13.6 21.8 
16.1 25.8 28.7 

14.7 18.3 26.8 
15.5 20.7 26.2 - 22.2 27.5 

12.2 22.3 - 
15.0 22.3 26.4 

- 26.5 29.5 

16.2 24.3 25.0 
16.1 25.2 27.7 
16.2 25.1 27.0 
16.3 25.6 30.2 - - 28.9 - 25.1 31.2 - 26.4 32.4 - 15.4 22.8 

12.7 21.8 28.3 

- 21.0 27.4 
- 22.7 29.7 
- 22.3 25.7 

11.0 16.5 20.3 

28.4 
31 .O 

26.8 
29.0 
26.9 
29.4 
27.7 
30.9 

34.8 

34.4 
34.1 
36.7 

38.0 
34.9 
36.9 

33.0 
34.6 

39.1 

37.6 
37.8 
37.4 
38.6 
38.8 
41.5 
38.4 
39.0 

40.2 

35.9 
39.9 
32.4 

36.8 

2.2 
3.0 

2.7 
2.2 
2.2 
2.7 
2.5 
2.7 

4.5 

(6.0) 
5.3 
5.7 

5.7 
5.0 
(5.5) 

5.5 
5.2 

5.2 

8.9 

8.9 
8.9 

8.9 
8.9 
9.6 

8.9 

(8.9) 

9.0 

9.5 
9.5 
9.5 

P: poor dispersion G :  good dispersion 
VG: very good dispersion F: flotation 
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was mixed with the s e l e c t e d  solvent  (10cm3), t h e  powder w a s  d ispersed by 

sub jec t ing  t h e  suspension t o  a 40 w a t t  u l t r a s o n i c  probe f o r  t w o  minutes. 

After s tanding for  5 days, t h e  s t a b i l i t i e s  of t h e  suspensions were evaluated 

v i s u a l l y .  

Cen t r i fuga l  ca s t ing  experiments a l s o  provided a n  expedient means of 

eva lua t ing  t h e  dispers ions;  e.g., good dispers ions y i e l d  high packing 

d e n s i t i e s .  Suspensions c o n s i s t i n g  of 290mg of S i c  powder and 9cm3 of  

inves t iga t ed  solvents  were prepared under a ni t rogen atmosphere i n  a similar 

manner as above. The suspensions were c e n t r i f u g a l l y  c a s t  a t  3000 g ' s  f o r  2 

hours. The sediment volumes were determined by measuring t h e i r  he igh t s  with 

a scale i n  t h e  c e n t r i f u g a l  t ubes ;  t h e  height-volume r e l a t i o n s h i p  had 

previously been ca l ib ra t ed  with a syr inge.  After  drying t h e  sediments i n  a 

ni t rogen atmosphere, sediment weights were measured t o  permit c a l c u l a t i o n  of  

t h e i r  packing d e n s i t i e s .  The microstructures  of t h e s e  sediments were 

observed with a scanning e l e c t r o n  microscope. 

Co l lo ida l  pressing w a s  also used t o  make green compacts from suspensions 

us ing  s e l e c t e d  solvents.  The packing d e n s i t i e s  of t h e s e  compacts were 

measured and t h e  microstructures  were obeserved w i t h  SEM. 

2. Results 

8 .  Screening T e s t  for Dispersibility 

The r e s u l t s  of suspension screening tests were evaluated and were 

c l a s s i f i e d  i n t o  the fol lowing f o u r  ranks: 

0 Very good d i spe r s ion  (designated V G ) :  most of t h e  p a r t i c l e s  remained 

w e l l  dispersed after s e v e r a l  days. 
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0 Good d i spe r s ion  (designated G ) :  some p a r t i c l e s  remained w e l l  

d i spersed ,  while  o t h e r s  (-1/2) s e t t l e d  out  of t h e  suspensions a f t e r  

s e v e r a l  days. 

e Poor d i spe r s ion  (designated P ) :  most of t h e  p a r t i c l e s  s e t t l e d  out  of 

t h e  suspensions within one day. 

0 P a r t i c l e  f l o a t a t i o n  (designated F ) :  most of t h e  powder f l o a t e d  on t h e  

so lvent  sur face .  The p a r t i c l e s  could not be incorpora ted  i n t o  t h e  

l i q u i d ,  even a f t e r  vigorous a g i t a t i o n .  This  phenomenon w a s  observed 

only f o r  t h e  combination of water and pure laser powder. 

S i g n i f i c a n t  d i f f e rences  i n  d i s p e r s i b i l i t y  were observed between pure 

l a s e r  powder a n d  oxidized l a s e r  powder as shown i n  Table  5 bu t  not between 

s p e c i f i c  pure powder types.  I n  t h e  case of pure laser powders, "very good" 

d i spe r s ion  w a s  observed only f o r  o l e i c  ac id .  "Good" d i spe r s ion  w a s  observed 

f o r  t h e  o the r  carboxyl ic  ac ids  (such as propionic  ac id  and  n-octanoic a c i d ) ,  

high molecular weight a lcohols  (such as n-octyl a l c o h o l ) ,  e thy lene  g lyco l  

e t c .  On t h e  o the r  hand, oxidized l a s e r  powders dispersed very we l l  i n  many 

kinds of so lven t s  such as a l l  a lcohol  groups,  propylamine, e t h y l  formate a n d  

oc tanoic  ac id .  

b. Centrifugal Teat 

Packing d e n s i t i e s  of cen t r i fuga l  s e d i m e n t s  a r e  a l s o  given i n  Table 5 

f o r  s e v e r a l  so lven t s .  Packing d e n s i t i e s  were d i r e c t l y  r e l a t e d  t o  t h e  liqiaid 

f u n c t i o n a l  group and  t h e  s p e c i f i c  powder type. 
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For pure l a s e r  powders, o c t y l  a l coho l  showed t h e  h ighes t  packing 

d e n s i t i e s .  However, t h e  packing d e n s i t i e s  from o l e i c  a c i d  w a s  not very high;  

it w a s  t he  b e s t  solvent  i n  t h e  screening tes t .  A s t rong  c o r r e l a t i o n  between 

c e n t r i f u g a l  packing d e n s i t i e s  and screening tes t  r e s u l t s  w a s  observed f o r  t h e  

commercial powder which had an oxidized l a y e r ,  while some except ions were 

observed f o r  pure laser powders. These except ions may be a t t r i b u t e d  t o  t h e  

r e l a t i v e l y  lower d i s p e r s i b i l i t i e s  of t h e  pure laser powders. The average 

packing d e n s i t i e s  of  t h e  laser powders increased i n  t h e  fol lowing o rde r ;  

€3038, ~ 0 6 0 ,  LOlb.  

densi ty  than t h e  l a s e r  powders. 

The commercial powder e x i h i b i t e d  a h ighe r  average packing 

C. Dispersibility and Solvent Characteristics 

D i s p e r s i b i l i t y  i n  t h e  examined systems may be a t t r i b u t e d  t o  t h e  

formation of e l e c t r i c a l  double l a y e r s  r e s u l t i n g  from surface- l iquid 

in t e rac t ions .  These i n t e r a c t i o n s  are defined by t h e  powlers' s u r f a c e  

c h a r a c t e r i s t i c s  and func t iona l  groups of t h e  l i q u i d  molecules. 

Packing d e n s i t i e s  of c e n t r i f u g a l  sediments as a func t ion  of hydrogen 

bond indexes of the  so lven t s  are shown i n  Figure 12. Hydrogen bond indexes 

were derived from chemical s h i f t s  of spectroscopic  d a t a  obtained by Gordy's 

technique. Good c o r r e l a t i o n  w a s  observed between packing d e n s i t i e s  of a l l  

powders and hydrogen bond indexes. 

packing dens i t i e s .  Good c o r r e l a t i o n s  between hydrogen bond index and 

screening t e s t  r e s u l t s  were also observed f o r  t h e  oxidized powder. However, 

s c r c e n i n ~  tes t  r e s u l t s  f o r  t h e  pure powders and t h e  d i f f e r e n c e s  i n  

d i s p e r s i b i l i t i e s  between pure a n d  oxidized powders could not be  i n t e r p r e t e d  

only by hydrogen bond s t r eng ths .  

High hydrogen bond iudexes provided high 
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T a h l e  6 .  Comparison be tween d i spe r s ib i l i t i e s  of p u r e  laser powder  a n d  
o x i d i z e d  laser powder. 
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The comparison between d i s p e r s i b i l i t i e s  of pure laser powders and 

oxidized laser powders are shown i n  Table 6 f o r  t h e  families of  organic  

s o l v e n t s  s tud ied .  Some solvent  f a m i l i e s ,  such as carboxyl ic  acid,  amine, 

etc. ,  showed d i f f e r e n t  d i s p e r s i b i l i t i e s  depending on t h e  s p e c i f i c  powder type  

and member of the solvent  family. These phenomena may be r e l a t e d  t o  t h e  

a c i d i t y  and  basici ty  of  t h e  so lven t s  and powder su r faces .  

Propylamine and low molecular weight a l coho l s ,  which act as L e w i s  bases, 

dispersed oxidized laser powder w e l l ;  however, they d i d  not d i s p e r s e  pure 

laser powder w e l l  i n  s p i t e  of t h e i r  high hydrogen bond indexes. 

o l e i c  a c i d  a n d  propionic acid,  which a c t  as L e w i s  a c i d s ,  dispersed pure 

laser powder w e l l ;  however, they did not d i spe r se  oxidized laser powder very 

w e l l .  This phenomenon may be a t t r i b u t e d  t o  t h e  d i f f e r e n t  i n t e r a c t i o n s  

between powder surfaces  and  so lven t s  due t o  t h e i r  a c i d i t y  o r  b a s i c i t y .  The 

su r faces  of pure laser powders are probably L e w i s  b a s i c  and have good 

i n t e r a c t i o n s  w i t h  L e w i s  a c i d  solvents .  

I n  c o n t r a s t ,  

The s t a b i l i t y  of  t h e  suspensions were evaluated i n  terms of t h e  

d i e l e c t r i c  constants  ( E )  of t h e  so lven t s  t o  see whether high E s o l v e n t s  

favored stable suspensions a n d  low E so lven t s  tended t o  g ive  rise t o  

f l o c c u l a t i o n .  No s t r o n g  c o r r e l a t i o n  w a s  found f o r  pure Sic powders; e.g., 

propionic  a c i d  showed good d i spe r s ion  c h a r a c t e r i s t i c s  i n  s p i t e  of i t s  low 8 .  

The oxidized powder gave r e s u l t s  t h a t  were similar t o  those  observed with S i ;  

t h e  d i spe r s ion  s t a b i l i t y  improved w i t h  i nc reas ing  d ie lec t r ic  constant  of t h e  

solvent .  



d. Packing Density and Powder Characteristics 

S i g n i f i c a n t  d i f f e r e n c e s  between t h e  c e n t r i f u g a l  sediment d e n s i t i e s  were 

observed among four  kinds of  powders: 

powder . 
B038, ~ 0 6 0 ,  LO14 and commercial 

These d i f f e rences  should be a t t r i b u t a b l e  t o  powder c h a r a c t e r i s t i c s  such 

as p a r t i c l e  s i z e ,  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  p a r t i c l e  morphology, 

aggregation and d i s p e r s i b i l i t y .  

p a r t i c l e  s i z e ,  i f  t h e  p a r t i c l e s  are l a r g e  enough t o  eliminate t h e  in f luence  

of e l e c t r o s t a t i c  f o r c e s ,  su r f ace  f i l m s ,  boundary e f f e c t s ,  e t c .  Increased 

width of p a r t i c l e  s i z e  d i s t r i b u t i o n  increases packing densi ty .  

ra t io  p a r t i c l e s  such as p l a t e s ,  rods, e t c . ,  pack t o  h ighe r  d e n s i t i e s  than 

spheres  as a r e s u l t  of o r i en ta t ion .  Spheres can pack most uniformly. 

Agglomerates and aggregates  generally (but  not always) have lower packing 

dens i ty  than randomxy packed individual  p a r t i c l e s .  

Packing dens i ty  should be independent of 

High a spec t  

The packing d e n s i t i e s  achieved with t h e  t y p e  LO14 powder were 

c o n s i s t e n t l y  higher  than those  achieved with type  BO38 and ~ 0 6 0  powders. 

Although t h e  type  LO14 powder w a s  approximately twice as l a r g e  as t h e  o t h e r  

two, it is un l ike ly  t h a t  t h i s  difference was responsible  f o r  t h e  improved 

packing densi ty .  A l l  t h r e e  exhibited nominally t h e  same d i s p e r s i b i l i t i e s .  

It i s  more l i k e l y  t h a t  t h e  BO38 and ~ 0 6 0  powders c o n s i s t  of aggregated 

primary p a r t i c l e s  which can be dispersed but  do not pack w e l l .  Fu r the r  

research with photon c o r r e l a t i o n  spectrometry should clarifly t h i s  i s sue .  The 

high packing d e n s i t i e s  achieved with the  commercial powder may be a t t r i b u t e d  

t o  wide p a r t i c l e  s i z e  d i s t r i b u t i o n  and morphology. 

3 7  



e. Characterization of t h e  Sediments and C o l l o i d a l l y  Pressed Green 

Bodies 
* 

The micrographs of t h e  t o p  su r faces  of c e n t r i f u g a l  sediments from L014- 

hexane and L014-octyl a l coho l  suspensions are shown i n  Figure 13. 

packing d e n s i t i e s  are 20.5% and 33.2%, r e spec t ive ly .  The p a r t i c l e s  

dispersed i n  octylacohol a r e  packed much bet ter  as shown by fewer numbers of 

l a r g e  voids a n d  loosely packed agglomerates. 

These 

Micrographs of  a f r a c t u r e  su r face  and a s i d e  s u r f a c e  of a c o l l o i d a l  

pressed p e l l e t  using o c t y l  a l coho l  are shown i n  Figure 1 4 .  

than t h e  p a r t i c l e  s i z e  are p resen t  and s e v e r a l  areas show i d e a l  c l o s e  packing 

of spheres.  

No voids l a r g e r  

The packing dens i ty  of t h i s  p e l l e t  w a s  -62%. 

f. Effect of Carboxylic Acid in Solvents 

According t o  a sc reen ing  t e s t  of d i s p e r s i b i l i t y ,  carboxyl ic  a c i d s ,  

e s p e c i a l l y  o l e i c  a c i d ,  were one of t h e  b e s t  d i s p e r s a n t s  f o r  d i spe r s ing  pure 

laser powder. However, o l e i c  a c i d  may not be d e s i r a b l e  because of i t s  high 

v i s c o s i t y  and bo i l ing  po in t .  Oleic  a c i d  w a s  t h e r e f o r e  d i l u t e d  i n  t h e  o t h e r  

so lven t s  and the s o l u t i o n  w a s  evaluated with a c e n t r i f u g a l  test  (Figure 

l5a) .  

The r e s u l t s  are given i n  Figure l5b.  Small amounts of o l e i c  a c i d  and s t e r i c  

a c i d  i n  hexane and chloroform improved t h e  packing d e n s i t y  of  t h e  sediments 

over t hose  of the pure so lven t s .  

S t e r i c  a c i d  w a s  also evaluated as a n  a d d i t i v e  t o  t h e  same solvents .  

3. Conclusions 

Laser S i c  powder showed d i f f e r e n t  d i s p e r s i b i l i t y  tendencies  than  

commercial powder because of i t s  pure surface.  

t h e s e  powders i n  non-aqueous so lven t s  were r e l a t e d  t o  t h e  a c i d i t y / b a s i c i t y  

The d i s p e r s i b i l i t i e s  of 
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Figure 13. 

( a )  LOlh/Hexane 
ORIGINAL PAGE IS 
O f  POOR QUALITY 

(b) LO14 /Cetyl  Alcohol 

SEM photomicrographs of cen t r i fuga l ly  c a s t  S i c  sediments from 
( a )  LOlh/hexane a n d  (b) LOlh/octyl a lcohol .  
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ORIGINAL PAGE 13 
OF POOR QUALITY ( a )  Fractured Surface 

( b )  S ide  Surface 

Figure 14 .  SEM photomicrographs of c o l l o i d a l  pressed Sic compact from 
LOlb/octyl a lcohol :  ( a )  f r ac tu red  su r face ,  (b) s i d e  sur face .  
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Figure 15. Cen t r i fuga l  pwking  d e n s i t i e s  of powder type  BO60 as a func t ion  of 
carboxyl ic  ac id  concentration i n :  ( a )  o l e i c  a c i d ,  (b) stearic ac id .  
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i i r ic j  t,hc h y d r o g e n  bond s t r t ?nKt .h  of t he  s o l v e n t s .  Oleic w i d  showed t h e  best 

d i s p e r s i b l i l i t y  for  laser powder; however it might not be d e s i r a b l e  because 

of i t s  high v i scos i ty  and b o i l i n g  po in t .  Octyl a l coho l  may be t h e  most 

s u i t a b l e  pure solvent.  Using c o l l o i d a l  p re s s ing  with o c t y l  a l coho l ,  uniform 

and high dens i ty  (up t o  6 3 % )  green bodies were obtained. 

C. Disperaion of S I C  by Steric S t a b i l i z a t i o n  

1. Experiments 

a. Systems Studfed 

Oloa-1200TM w a s  u s e d  as a d i spe r san t  with hexane. Other d i spe r san t s  

were t e s t e d  p re l imina r i ly  by v i s u a l  inspect ion;  however, none w a s  as 

e f f e c t i v e  as Oloa-1200 f o r  laser synthesized S i c .  35 

Nine d i f f e r e n t  laser der ived powders were examined i n  t h i s  work. Major 

d i f f e r e n c e s  between powders were a t t r i b u t e d  t o  t h e  carbon source and t h e  

laser o p t i c s ;  

gas v e l o c i t y ,  e t c .  Physical  p r o p e r t i e s  of  t h e  powders which were used i n  

t h e s e  experiments a r e  summarized i n  Table 7. 

minor d i f f e r e n c e s  were a t t r i b u t e d  t o  s y n t h e s i s  temperature,  

b. Method 

Dispersions were prepared under oxygen-free cond i t ions  us ing  a glove 

box. 

treatment t o  produce a dispersed state. 

Mixed  powders were sub jec t ed  t o  a 40 w a t t ,  5 minute u l t r a s o n i c  
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Table 7. Powder c h a r a c t e r i s t i c s  and syn thes i s  condi t ions  of  laser 
synthesized Sic  powders u s e ?  i n  s te r ic  d i spe r s ion  s tud ie s .  

Laser Power 
(W ) 

React an t  
1Nz;:er 1 (Carbon) 

Reaction Surface  
Temp ( " C )  Area ( m 2 / g )  

LOO6 
G O 1 1  
GO10 
BO59 
BO82 

GO09 
BO64 
A002 

~ 0 0 8  

Methane 
Methane 
Methane 
Methane 
Ethylene 
E t  hy l e  ne 
Ethylene 
Ethylene 
Ethylene 

1830 
1600 
1615 
1550 
1310 
1410 

1940 
N .A 

1580 

32.1 
53.4 
49.1 
58.2 
69.6 
67 .o 

65.3 
61.9 

72 .4 

1.5 - 
0 

1: 1.4 - 

v a 

a 
4 
v 

0 LO06 

x GO11 

m BOG4 

0 ) I  I 

El El .,------I El 
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BET Equiv. 
Diameter (nm) 

58.5 
35.1 
38.1 
32 02 
26 .g 
25 -9 
30 03 
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19.4 

Figure  16. Rela t ive  agglomerate s i ze  as a funct ion of t i m e  after a n  u l t r a s o n i c  
t reatment  f o r  t h r e e  d i f f e ren t  powders i n  Olos/hexane. The i n i t i a l  
agglomerate dimension was 
agglomeration per iod.  

taken  a t  t h e  end of t h e  fast 
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Cent r i fuga l  ca s t ing  was mainly used t o  eva lua te  packing a h i l i t y .  

Although t h i s  technique is  good f o r  quick eva lua t ions ,  it is not e f f e c t i v e  as 

a means f o r  making green bodies which a r e  ready t o  s i n t e r .  

c o l l o i d a l  pressing w a s  used f o r  t h e  green body f a b r i c a t i o n  study. 

Therefore 

Agglomerate s i z e s  were determined by photon c o r r e l a t i o n  spectroscopy. 

Primary p a r t i c l e  s i z e  and s i z e  d i s t r i b u t i o n  were measured by BET and TEM. 

Microstructures  of green bodies were examined d i r e c t l y  using SEM microscopy. 

2. Results and Discusmion 

a. Agglomerate Size/Time Dependence 

Agglomerate s i z e  w a s  measured as a funct ion of t i m e  a f t e r  u l t r a s o n i c  

treatment f o r  B064, GO11 and LO06 powders. 

t o  5 ~ 1 0 ’ ~  g / c c  powder and 30 - 40 w t %  Oloa-1200 based on powder weight. 

Figure 16 shows t h a t  t h e  agglomerate s i z e s  increased 5-65 i n  

Each sample contained 4 ~ 1 0 - ~  g / c c  

approximately 1 hr. 

tendency than t h e  o the r  two powders. 

dispers ions i n  pure hexane (>3000A 30 s e c )  shows t h a t  Oloa-1200 works as a n  

e f f e c t i v e  dispersant f o r  t h e  laser synthesized,  non-oxidized S i c .  However, 

t h e  r e s u l t s  also i n d i c a t e  t h a t  t h e  s t e r i c  b a r r i e r  formed by Oloa-1200 may not 

be e f f e c t i v e  enough t o  m a i n t a i n  a w e l l  d ispersed s ta te  f o r  a long period. 

BO64 powder showed a s l i g h t l y  higher  coagulat ion 

Comparing t h e s e  r e s u l t s  with similar 

b. Effect of t h e  Oloa Concentration on Packing Density 

It i s  des i r ab le  t o  minimize t h e  amount of d i spe r san t  needed t o  maintain 

a dispersed s t a t e  because t h e  d i spe r san t  may remain i n  t h e  green body after 

drying and it should be removed completely before  f i r i n g .  The m i n i m u m  Oloa 
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requirement w a s  examined by the  c e n t r i f u g a l  c a s t i n g  method. Samples were 

c e n t r i f u g 8 l l y  c a s t  at 3000 g ' s  f o r  1 hour. The powder concentrat ion i n  t h e  

s l i p s  w a s  1 vel$ f o r  each sample. 

The r e s u l t s  i n  Figure 17 show t h a t  t h e  minimum Oloa requirement is  

about 20 percent of t h e  powder weight. Assuming 1 Oloa molecule pe r  100A2 

of p a r t i c l e  s u r f a c e ,  a n  absorbed monolayer corresponds t o  approximately 2% 

of t h e  p a r t i c l e  weight. The excess d ispersant  probably remains dissolved i n  

t he  hexane solvent .  Preliminary d a t a  showed a weak dependence of t h e  

c r i t i c r t l  O l o ~  concentration on  the powder surface a rea .  T h i s  is c o n s i s t e n t  

w i t h  t h e  weak segregat ion of O l o ~  t o  t h e  p a r t i c l e s '  sur faces  and  i t s  high 

s o l u b i l i t y  i n  hexane. 

0 \ -  
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Oloa O i l  Concentration ( W t %  ) 

Figure 17. Centrifuged compact dens i ty  as a funct ion of Oloa 
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Cm Packing Density and Dlsperslbility 

Centrifuged compact d e n s i t i e s  exh ib i t ed  d i f f e r e n t  c h a r a c t e r i s t i c  l e v e l s  

depending on powder type. 

previous d i s p e r s i b i l i t y  evaluat ion tes t  r e s u l t s  i l l u s t r a t e s  one important 

r e s u l t .  

poor d i s p e r s i b i l i t y .  I n  poorly s t a b i l i z e d  d i spe r s ions ,  p a r t i c l e s  coagulate  

quickly a n d  t h e  coagulated p a r t i c l e s  prevent t h e  achievement of c l o s e  packing 

due t o  Keometrical r e s t r a i n t s .  

A comparison of t h e s e  dens i ty  values  with t h e  

The low packing dens i ty  of t h e  BO64 t ype  powder i s  explained by i t s  

Good d i s p e r s i b i l i t y  does not i n s l i r e  good packing, as i s  i l l u s t r a t e d  by 

t h e  d i f f e r e n c e  between LOO6 and GO11 type powders. 

d i s p e r s i b i l i t i e s ,  t h e s e  two powders with t h e i r  d i f f e r e n t  p a r t i c l e  s i z e  

d i s t r i b u t i o n s  showed q u i t e  d i f f e r e n t  packing d e n s i t i e s .  Hence, a d d i t i o n a l  

f a c t o r s  must be taken i n t o  account t o  exp la in  t h e  experimental  data .  

I n  s p i t e  of similar 

dm Primary Agglomerate Size  In the Oloa/Hexane System 

Agglomerate s i z e  was measured f o r  each powder immediately a f te r  a 5- 

minute u l t r a s o n i c  t reatment .  The resu l t s  are p l o t t e d  a g a i n s t  c o n s t i t u e n t  BET 

p a r t i c l e  diameters i n  Figure 18. 

I f  t h e  adsorption rate of Oloa molecules onto t h e  s u r f a c e  of t h e  S i c  

p a r t i c l e s  i s  much f a s t e r  than t h e  coagulation v e l o c i t y ,  t h e  agglomerate s i z e  

w i l l  be c l o s e  t o  ind iv idua l  p a r t i c l e  s i z e .  

agglomerate s i z e s  are 4-10 times l a r g e r  than t h e  c o n s t i t u e n t  p a r t i c l e  s i z e s ,  

a l imi t ed  amount of coagulation occurs p r i o r  t o  t h e  formation of s t e r i c  

b a r r i e r s  which are  good enough t o  prevent continued s t i c k i n g  of p a r t i c l e s  t o  

one another.  

per iod are t h e  u n i t s  from which compacts are formed. 

these primary agRlomerates c o n t r o l  compact p rope r t i e s .  

Since t h e  d a t a  show t h a t  t h e  

The agglomerated p a r t i c l e s  a t  t h e  end o f  t h e  f a s t  coagulat ion 

The c h a r a c t e r i s t i c s  Of 
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e. 

Col lo ida l  pressing w a s  performed with B064, GO11 and LO06 type powders 

Packing Density of C o l l o i d a l l y  Pressed Parts 

applying a 69 MPa (10,000 p s i )  pressure.  

t h e  pressed d e n s i t i e s  were p ropor t iona l  t o  t h e  centr i fuged compact 

d e n s i t i e s .  This  r e s u l t  i n d i c a t e s  t h a t  t h e  primary agglomerates which formed 

during t h e  f a s t  coagulation per iod and then became surrounded by Oloa-1200 

are not breakable with t h i s  l e v e l  of appl ied p res su re  range. Again, t h i s  

i l l u s t r a t e s  t h e  importance of making t h e  primary agglomerate s i z e  as small 

as poss ib l e  for  enhancing t h e  packing densi ty .  

The r e s u l t s  i n  Figure 19 show t h a t  

The pressed d e n s i t i e s  achieved with ~ 0 0 6  type powder deserve comment. 

A t  4 3 %  of t h e o r e t i c a l ,  they reach t h e  densi ty  of a random close-packed 

s t r u c t u r e .  This  i s  t h e  maximum dens i ty  l e v e l  t h a t  can be achieved with non 

ordered, uniform diameter s p h e r i c a l  p a r t i c l e s .  Counting near ly  touching 

neighbors, t h i s  s t r u c t u r e  has a coordination number s l i g h t l y  g r e a t e r  

than 11. 

Compacts were examined us ing  SEM. The mic ros t ruc tu res  showed t h e  

importance of using small primary agglomerate s i z e  powders. The l o w  dens i ty  

compacts (-33%) made with powder type BO64 contained l a r g e  pores. I n  

c o n t r a s t ,  t h e  high dens i ty  compacts (-63%) made with powder type  ~ 0 0 6  

exh ib i t ed  pore diameters approximately equal  t o  t h e  primary p a r t i c l e  

diameter. 

3. Conclusions 

Oloa-1200 i n  hexane w a s  found t o  be an e f f e c t i v e  d i spe r san t  system f o r  

However, t h e  s p e c i f i c  powder is a l s o  important with laser synthesized Sic .  

respect  t o  achieving small primary agglomerate s i z e s  and maintaining 

a w e l l  dispersed state a f t e r  s t a b i l i z a t i o n  by a s t e r i c  l aye r .  

them i n  
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The primary agglomerate s i z e  g r e a t l y  a f f e c t e d  t h e  packing d e n s i t y .  

These p r i m r . y  agglomerates were n o t  breakable  with pressures  up t o  69 MPa 

( 10,000 p s i  ). 

V. FORMATIOH OF SHAPES AND PARTS 

The unique s u r f a c e  p rope r t i e s  of t h e s e  covalent  m a t e r i a l s ,  as w e l l  as 

t h e  need t o  m a i n t a i n  high p u r i t y  throughout processing,  p l ace  unusual 

r e s t r i c t i o n s  on t h e  forming and shaping process  as has been discussed.  

These r e s t r i c t i o n s  include the  choice of a non-contaminating d i spe r s ing  

medium a n d  l i m i t e d  exposure t o  a i r  a n d  water  vapor. I n  edd i t ion  t h e  choice 

as t o  whether o r  not t o  add add i t iona l  components such as binders  and 

l u b r i c a n t s  s p e c i f i c a l l y  t o  a i d  post-dispers ion forming i s  tempered by t h e s e  

r e s t r i c t i o n s  as we l l  as t h e  r e s t r i c t i o n s  imposed by drying and f i r i n g  

processes.  Questions such as residue formation and e f f l u e n t  generat ion i n  a 

highly impermeable compact tend t o  discourage t h e  use  of b inders  and 

lub r i can t s .  36 However, t h e  proper s e l e c t i o n  of a disper;ing system may 

perform t h e s e  func t ions  without incorporat ing a d d i t i o n a l  compounds. H. 

R ~ r n p f ~ ~  has shown t h a t  l i q u i d  adhesion fo rces  of low molecular weight 

compounds can improve green s t rength  as we l l  as inc rease  t h e  a b i l i t y  of a 

compact t o  p l a s t i c a l l y  deform under s t r e s s .  These c h a r a c t e r i s t i c s  enhance 

t h e  a b i l i t y  of a wet compact t o  be consol idated by p res s ing  and t o  m a i n t a i n  

i n t eg r i t , y  a f t e r  press ing .  

t h e  d e s i r e  t o  exp lo i t  t hese  proper t ies  of f u l l y  wet compacts. The forming 

technique chosen w a s  c o l l o i d a l  pressing. 

The choice of a forming techrdque w a s  based on 

A. Colloidal Preseing 

The c o l l o i d a l  press ing  process i s  analogous t o  t h e  commercial p r a c t i c e  
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of s l i p  f i l t r a t i o n  followed by w e t  pressing t h e  f i l t e r  cake. This  process i s  

capable of producing r e l a t i v e l y  de fec t  free,  high dens i ty  compacts because 

c o l l o i d a l  pressing eliminates t h e  p o s s i b i l i t y  of inco rpora t ing  macro-bubbles 

while loading the  p re s s  with t h e  f i l t e r  cake. Co l lo ida l  p re s s ing  occcurs i n  

two s t a g e s  within one apparatus:  f i l t r a t i o n  and consol idat ion.  

1. Fi l t ra t ion  

F i l t r a t i o n  occurs i n i t i a l l y  as t h e  solvent  is forced through t h e  porous 

membrane by t h e  load on t h e  p i s ton .  

forming a f i l t e r  cake. 

high i n t e r a c t i o n a l  p o t e n t i a l  t h e  ind iv idua l  p a r t i c l e s  w i l l  be added t o  t h e  

compact a t  a point of minimum p o t e n t i a l  (e.g. t h e  saddle  po in t  of t h r e e  

p a r t i c l e s ) .  If t h e  powder i s  monodispersed and t h e  process  occurs without 

long range ordering such a compact w i l l  have a maximum dens i ty  of 

approximately 637 corresponding t o  random close packed s t r u c t u r e .  

P a r t i c l e s  b u i l d  up on t h e  membrane 

I f  t h e  p a r t i c l e s  are p e r f e c t l y  dispersed and have a 

I n  many systems however compact densi ty  fa l ls  s h o r t  of t h i s  mark. Low 

dens i ty  f l o c s  containing voids may e x i s t  i n  t h e  s l i p .  A low i n t e r p a r t i c l e  

i n t e r a c t i o n a l  p o t e n t i a l  may allow t h e  s l i p  p a r t i c l e s  t o  add t o  t h e  compact 

at t h e  e a r l i e s t  i n t e r a c t i o n  r a t h e r  than a d j u s t i n g  t o  t h e  minimum saddlepoint .  

Such behavior would r e s u l t  i n  a l o w  dens i ty  chain.y s t r u c t u r e d  compact. The 

force of t h e  solvent  flowing through a p a r t i a l l y  dense compact may 

subsequently r e s u l t  i n  c h a n n e l  formation. 3 8  

These mechanisms r e s u l t  from non-ideal d i spe r s ion  c h a r a c t e r i s t i c s  and/or  

excessive f i l t r a t i o n  rates. These e f f e c t s  can be monitored by comparing t h e  

r e s u l t s  of a simple f i l t r a t i o n  experiment with t h e  t h e o r e t i c a l  model of f l u i d  

flow through a homogeneous powder compact as presented by Bird e t  a1.39 
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A l l  q u a n t i t i e s  a r e  d i r e c t l y  measurable except L' which is c a l c u l a t e d  us ing  

t h e  appropr i a t e  E once t h e  s u p e r f i c i a l  f l u i d  v e l o c i t y  (V,) is measured f o r  

pure so lven t  pass ing  through the  membrane - f i l t e r  assembly. The 

c o r r e l a t i o n  between t h e o r e t i c a l  and experimental  flow rates is  a good means 

of monitoring t h e  s t r u c t u r e  of the  f i l t e r  compact. An experimental  flow 

r a t e  less than t h e  t h e o r e t i c a l  value i s  evidence of clogged i n t e r s t i t i a l  

passageways possib1.y r e s u l t i n g  from a broad p a r t i c l e  si7e d i s t r i b u t i o n .  I f  

t h e  experimental  flow rate is g rea t e r  than t h e o r e t i c a l ,  R more h ighly  

permeable compact implies  t h a t  low dens i ty ,  low r e s i s t a n c e  pathways are 

in t e r spe r sed  throughout t h e  powder compact. These low r e s i s t a n c e  pathways 

are known as channels.  These channels could la ter  serve  as c r i t i c a l  f laws 

f o r  f r a c t u r e .  

'If t h e  forming process  ended he re ,  as it would f o r  s l i p  c a s t i n g  o r  

p re s su re  f i l t r a t i o n ,  t h e  low density channelled s t r u c t u r e  would be r e t a ined  

and  i n f e r i o r  p a r t s  would r e s u l t .  

p re s s ing  se rves  t o  e l imina te  most of t h e s e  p o t e n t i a l  flaw sites. 

However t h e  second phase of c o l l o i d a l  
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2. Consolidstion 

The consol idat ion s t a g e  of c o l l o i d a l  press ing  begins  when t h e  opposing 

f i l t e r e d  compacts, t h a t  b u i l t  up  during f i l t r a t i o n ,  impinge upon each o the r  

( f o r  b i d i r e c t i o n a l  flow) o r  t h e  f i l t e r e d  compact impinges on t h e  opposing 

non-porous p lug  ( f o r  u n i d i r e c t i o n a l  f low).  

consol ida t ion  s tage  i s  accompanied by a rap id  inc rease  i n  t h e  load a t  

constant  s t r a i n  r a t e .  D u r i n g  t h i s  p rocess ,  t h e  low dens i ty  f i l t e r  compact 

( t y p i c a l l y  35% dense) undergoes s u b s t a n t i a l  rearrangement. 

number of nearest neighbors increase  from t y p i c a l l y  6 t o  11,4 

t h a t  had formed during f i l t r a t i o n  co l lapse .  

During t h e  normal procedure,  t h e  

The average 

and channels  

The consol ida t ion  process  under constant  rate of s t r a i n  is  t r e a t e d  i n  

d e t a i l  by Lambe and Whitman4’. 

t h i s  work are: 

Some important i s sues  t h a t  are discussed i n  

0 pressure a n d  dens i ty  g rad ien t s  go t o  zero  as t h e  s t ra in  rate goes t o  

zero  (assuming no d i e  f r i c t i o n ) .  

e as t h e  load is  removed t h e  a f f i n i t y  t h a t  t h e  compact has f o r  t h e  

l i q u i d  can cause t h e  f l u i d  t o  be reabsorbed, r e s u l t i n g  i n  compact 

swel l ing and  poss ib l e  f r a c t u r e .  

e t h e  e l a s t i c i t y  of t h e  p a r t i c l e s  can a l s o  r e s u l t  i n  compact swel l ing  

during load r e l e a s e ,  se rv ing  as another  mechanism toward compact 

f r ac tu re .  

These t h r e e  issues  can be addressed ind iv idua l ly  by eva lua t ing  t h e  i n t e g r i t y  

of t h e  compacts (1.e. s i n t e r e d  s t r eng th  under constant  cond i t ions )  as a 

funct ion of :  

0 s t r a i n  r a t e  

o rate of load removal 

o limited maximum load 
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I n  a d d i t i o n ,  t h e  i s s u e  of l i q u i d  reabsorpt ion during load removal can be 

addressed by observing t h e  e f f e c t  of solvent  removal from t h e  compacts while 

under a load,  followed by load removal. 

B. Procedures and Results 

1. C o l l o i d a l  Press ing  

Cyl ind r i ca l  p e l l e t s  were formed by c o l l o i d a l  p re s s ing  us ing  t h e  d i e  

apparatus shown s c h e m t l c a l l y  i n  F i g u r e  20. The solvent  is e x t r a c t e d  from 

t h e  s l i p  through membrane f i l t e r s  which cover porous stainless s teel  frits. 

The load i s  appl ied t o  t h e  f r i t s  by ported stainless s t ee l  p i s t o n s ,  t h e  d i e  

is brass .  Two porous f r i ts  are used i n  b i d i r e c t i o n a l  p re s s ing  and one i s  

used f o r  u n i d i r e c t i o n a l  pressing. 

S i l i c o n  ca rb ide  and s i l i c o n  s l i p s  were prepared by son ica t ing  a 5 vel$ 

solids-methanol mixture i n  a glass v i a l  f o r  t h r e e  minutes a t  a power l e v e l  of 

65 w a t t s .  The s l i p  w a s  then pipeted i n t o  t h e  d i e  and pressed. 

By v i s u a l l y  comparing p e l l e t s  t h a t  were c o l l o i d a l l y  pressed with 

u n i d i r e c t i o n a l  and b i d i r e c t i o n a l  geometries, it w a s  obvious t h a t  t h e  lat ter 

geometry o f t en  r e s u l t e d  i n  laminate f l a w s  i n  t h e  middle of t h e  compacts. 

These f l a w s  were formed when t h e  opposing f i l t e r  cakes m e t .  For t h i s  reason 

t h e  b i d i r e c t i o n a l  p re s s ing  geometry w a s  abandoned. The resul ts  reported 

r e f l e c t  t h e  u n i d i r e c t i o n a l  f l o w  geometry. 

2. F i l t r a t i o n  Stage 

A baroid-type f i l t e r  p res s  obtained from Gelman Sciences,  Inc.  (#4280) 

w a s  used i n  t h e s e  experiments. 

propanol was placed i n  t h e  f i l t e r  chamber f i t t e d  with a 0.22 pm t e f l o n  

membrane (Mi l l i po re  FG) f i l t e r .  

A 5 volume $ presonicated s l i p  of  S i c  and 2- 

The chamber was closed and a t t ached  t o  a 
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Figure 20. Components making up c o l l o i d a l  press ing  apparatus .  
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regulated ni t rogen p res su re  of 0.064 MPa (10 p s i ) .  

valve w a s  opened exposing t h e  chamber t o  t h e  ni t rogen pressure.  Immediately 

c l e a r  f l u i d  exuded from t h e  lower chamber vent and poured i n t o  a t a r e d  

beaker loca t ed  on a Mettler AE-163 balance with RS-232 i n t e r f a c e .  A timer 

switch relayed t h e  instantaneous weight of exuded f l u i d  t o  a p r i n t e r  a t  f i v e  

second i n t e r v a l s .  When t h e  f lu id  stopped, t h e  experiment w a s  h a l t e d  and t h e  

volume of t h e  cake w a s  determined by bulk measurements. 

.determined af ter  drying i n  nitrogen f o r  24 hours a t  180"~. 

4 t  ze ro  time, a t o g g l e  

The weight w a s  

The weight of  so lven t  exuded from t h e  baroid p r e s s  is p l o t t e d  i n  

Figure 21 as a funct ion of time t o  t h e  one h a l f  power. The i n i t i a l  flow 

rate is used t o  c a l c u l a t e  t h e  e f f e c t i v e  th i ckness  of t h e  f i l t e r  (L') and t h e  

compact void volume is determined by bulk measurements of t h e  cake. These 

parameters are used t o  c a l c u l a t e  t h e  t h e o r e t i c a l  weight of solvent  as a 

funct ion of t i m e  t o  t h e  one half power which are a l s o  p l o t t e d  i n  Figure 21. 

The t h e o r e t i c a l  and experimental d a t a  are s t r a i g h t  l i n e s  as expected. 

The discrepency between t h e  two s lopes  i n d i c a t e s  t h a t  t h e  a c t u a l  cake is  

more highly permeable than  t h e  t h e o r e t i c a l l y  homogeneous s t ructure  assumed 

i n  t h e  model, s t rong ly  suggesting t h a t  channels were formed under t h e s e  

experimental  cond i t ions  as were observed by A k ~ a y ~ ~  i n  s l i p  cast samples. 

3. Consolidation Stage 

Using t h e  c o l l o i d  p r e s s  t h e  f i l t r a t i o n  s t a g e  occurs at very low 

p res su res ,  t y p i c a l l y  <0.64 MPa ((100 p s i ) .  

p i s ton  p o r t  a t  n rate of lcm3/cm2 of f i l t e r /minute .  

due s t r i c t l y  t o  f i l t r a t i o n  i s  t y p i c a l l y  30-40%. Once t h e  s l i p  has been 

f i l t e r e d  and t h e  opposing compacts impinge i n  t h e  case of b i d i r e c t i o n a l  

p re s s ing  o r  t h e  compact impinges on t h e  non-porous plug i n  t h e  case of 

The so lven t  is exuded from t h e  

Compact d e n s i f i c a t i o n  



u n i d i r e c t i o n a l  pressing,  t h e  pressure inc reases  as t h e  s t ra in  rate is 

maintained. This occurs  i n  less than one minute during which t i m e  t h e  

compact dens i ty  increases t o  a maximum value of 63%. 

conso l ida t ion  s tage approximately 0 .2cm3 of so lven t  i s  extruded. 

pressure i s  held a t  a maximum while stress g rad ien t s  are allowed t o  relax 

f o r  1 / 2  t o  60 minutes. 

piston-die and compact-die f r i c t i o n .  

c o e f f i c i e n t  of f r i c t i o n  of s i l i c o n e  l u b r i c a t e d  v i ton  O-rings on t h e  b r a s s  

b a r r e l ;  t h e  lat ter is also small due t o  t h e  l o w  aspect  r a t i o  of t h e  p e l l e t  

geometry (i.e. thickness  : diameter <1:5). A homogeneously dense 

mic ros t ruc tu re  should r e s u l t  i n  t h e  absence of stress g r a d i e n t s ,  and t h e  

channels t h a t  formed during f i l t r a t i o n  should be e rad ica t ed  by t h i s  

During t h i s  

The 

Remaining r e s i d u a l  stress g rad ien t s  are due t o  t h e  

The former is  m i n i m a l  due t o  t h e  l o w  

consol idat  ion rearrangement. 

The e f f e c t s  o f  maximum loads on p e l l e t  d e n s i t i e s  are given i n  Figure 22 

f o r  s i l i c o n  compacts. The dens i ty  rises with increased maximum load as 

p r e d i ~ t e d . ~  2-44 According t o  Bashin4 t h e  r e l a t i o n s h i p  between dens i ty  (13) 

and p res su re  (P) is given by: I 
+ c  = l o g  P 

where k and c are cons t an t s .  

The de r iva t ion  of t h i s  equation i s  based on t h e  assumption t h a t  t h e  

energy inputed i n t o  t h e  system i s  equivalent t o  P*AV and t h a t  t h e  

incremental  work done on t h e  cake is  r e l a t e d  t o  t h e  log of t h e  incremented 

dens i ty  change. It  i s  expected t h a t  t h i s  r e l a t i o n s h i p  should hold true up 

t o  t h e  po in t  of f u l l y  dense compaction (i.e. p a r t i c l e  t o  p a r t i c l e  c o n t a c t )  

o r  up t o  t h e  onset of p a r t i c l e  f r a c t u r e .  

Data f o r  t h i r t y  c o l l o i d a l l y  pressed s i l i con  powder compacts (B-OOb-SED) 

is  given i n  Figure 22 over  a wide range of c o l l o i d a l  p re s s ing  p res su res .  
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The c l o s e  f i t  implies t h a t  A s i n K l e  process governs compaction and t h a t  

p a r t i c u l a t e  f r a c t u r e  i s  not occurring. 

The green compact i n t e g r i t y  is r e f l e c t e d  i n  Figure 23 as % y i e l d  during 

p res s ing  versus maximum load. The y i e l d  f o r  t h e  s i l i c o n  compacts drops 

dramatical ly  above 69 MPa (10,000 p s i )  while t h e  y i e l d  remains constant  f o r  

S i c .  W e  do not have a n  explanat ion f o r  t h i s  d i f f e r e n c e  between t h e  t w o  

materials. 

G r e e n  s i l i c o n  compact dens i ty  i s  p l o t t e d  as a funct ion of  t i m e  i n  

Figure 24. For times longer than one h a l f  minute dens i ty  is constant .  Th i s  

implies t h a t  t h e  stress re l axa t ion  is very s h o r t  f o r  laser synthesized 

s i l i c o n  compacts. The same behavior is expected f o r  laser synthesized 

s i l i con  carbide powder. 

TIIlE AT M A X I f l U f l  PRESSURE (MIII) 

Figure 24. Green s i l i c o n  compact densi ty  versus  t i m e  a t  maximum 
c o l l o i d a l  pressing pressure.  
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c. summary 

The d e n s i t i e s  of t h e  compacts have increased continuously during t h e  

program as powder syn thes i s  techniques,  dispers ion techniques and p res s ing  

techniques have been developed. A major con t r ibu t ion  t o  increased compact 

densi ty  has been t h e  improved powder c h a r a c t e r i s t i c s .  Con t ro l l i ng  

aggregation and p a r t i c l e  s i z e  d i s t r i b u t i o n  is important f o r  achieving t h e  

more dense compacts. 

been achieved. 

Laser synthesized SIC compact densi t ies  up t o  6346 have 

This dens i ty  (63%) corresponds approximately t o  t h e  t h e o r e t i c a l  value 

f o r  uniform spheres i n  a random c l o s e  packed s t r u c t u r e ,  which has  t h e  

maximum p o s s i b l e  achievable  density without introducing order ing.  Including 

"nearly touching" neighbors, t h i s  s t r u c t u r e  has a coordinat ion number i n  

excess of 11 t h u s  approaching t h a t  of  c l o s e  packed a r r a y s  i n  i t s  

p e r f e c t  ion. 

VI. DENSIFICATIOI 

Less than planned l e v e l s  of e f f o r t  were a c t u a l l y  spent on t h e  

d e n s i f i c a t i o n  s t u d i e s .  I n i t i a l  shaping study r e s u l t s  i nd ica t ed  t h a t  green 

d e n s i t i e s  were t o o  low t o  y i e l d  u s e f u l  f i n a l  microstructures .  S t a r t i n g  from 

green d e n s i t i e s  as low as - 40$, w e  a n t i c i p a t e d  l a r g e  r e s i d u a l  pores ,  

discontinuous g r a i n  growth and Unacceptably low f i n a l  d e n s i t i e s .  only a f t e r  

recent  syn thes i s  procedures produced t h e  improved powders from which green 

d e n s i t i e s  i n  excess of 60% could be achieved, w a s  it reasonable t o  undertake 

d e n s i f i c a t i o n  research. 
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T h i s  research should be viewed as an i n i t i a l  demonstration of 

d e n s i f i c a t i o n  f e a s i b i l i t y ,  t h e  d e f i n i t i o n  of necessary time-temperature 

combinations, and  a preliminary evaluat ion of t h e  r e s u l t i n g  p a r t s .  We have 

determined t h e  r e s u l t i n g  dens i ty  a f t e r  a one hour s i n t e r i n g  cyc le  at 

temperatures ranging from 1800 t o  2100°C. 

t h e s e  experimentes w a s  s e l e c t e d  on t he  basis of maximum green d e n s i t i e s .  

Resul t ing p a r t s  were cha rac t e r i zed  w i t h  respect  t o  dens i ty ,  mic ros t ruc tu re ,  

phases, s t r e n g t h ,  hardness,  and f r a c t u r e  toughness. 

The s i n g l e  powder type  used f o r  

A. Experimental  Procedures  

1. S I C  Powder 

S i l i c o n  carbide powder type L-033 w a s  used f o r  t h e s e  i n i t i a l  

d e n s i f i c a t i o n  s t u d i e s .  The corresponding undoped powder synthesized under 

t h e  same process  condi t ions exhibi ted t h e  h ighes t ,  reproducible  green dens i ty  

p a r t s  made by c o l l o i d a l  pressing.  Introduct ion of approximately 1% by weight 

of B i n t o  t h e  reactant  gas stream as B2H6 caused no n o t i c i b l e  changes i n  any 

powder o r  green p e l l e t  c h a r a c t e r i s t i c s .  This powder has a mean diameter of 

0.1 pm a n d  a s t a n d a r d  dev ia t ion  of - 20% on a weight bas i s .  

composition w a s  3% excess carbon by weight. As synthesized,  t h i s  powder i s  

100% R S i c .  

The nominal 

2. P e l l e t  P r e s s i n g  

Nominally 1 cm diameter by 2 mm t h i c k  green p e l l e t s  were made by 

c o l l o i d a l  pressing. Powders were dispersed i n  o c t y l  a l coho l  a t  a 

concentrat ion 400 mg powder i n  3.5 m l  of l i q u i d  us ing  a 60 w a t t  u l t r a s o n i c  

probe f o r  5 minutes. This system w a s  s e l e c t e d  on t h e  b a s i s  of t h e  pure 
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solvent  d i spe r s ion  study. Dispersants were avoided since w e  could not r u l e  

out  poss ib l e  adverse e f f e c t s  of adsorbed molecules. P e l l e t s  were pressed 

with u n i d i r e c t i o n a l  flow f o r  15 minutes a t  a d i e  p re s su re  of 13.7 MPa 

(2000 p s i ) .  

64%; 

These procedures yielded green p e l l e t s  having d e n s i t i e s  of 62- 

t h e  range r ep resen t s  t h e  measurement e r r o r .  

3. Drying 

After pressing;, t h e  p e l l e c t s  were d r i ed  t o  remove a l l  v o l i t i l e s  t o  avoid 

damaging t h e  p a r t s  during f i r i n g .  

soak i n  a 200°C N g  atmosphere a f t e r  an 8 hour l inear  ramp. 

of t h i s  drying cyc le  w a s  es tab l i shed  by weight loss measurements as a 

funct ion of exposure t i m e .  

Drying w a s  accomplished with a 24 hour 

The completeness 

4.  F ir ing  

Dried samples were f i r e d  a t  temperatures ranging from 1800 t o  2100°C i n  

a g raph i t e  tube  furnace.  The samples were supported v e r t i c a l l y  i n  a s l o t t e d  

carbon channel with a nominally 3 mm spacing between samples. The A r  

atmosphere w a s  e s t ab l i shed  with a 2 hour f lu sh  before  hea t ing  was i n i t i a t e d .  

The hea t ing  cyc le  cons is ted  of a 50"C/hour l inear ramp t o  t h e  f i r i n g  

temperature ,  a one hour soak and a furnace quench (50-10O0C/hour). 

5. Exposures 

The powders and p e l l e t s  were handled without a i r  exposure u n t i l  t h e  

pressed green p e l l e t s  were seperated from t h e  TeflonTM fi l ters.  This  s t e p  

w a s  done i n  a i r  because i t  is impossible t o  avoid damage us ing  t h e  glove box 

gloves.  The p e l l e t s  were exposed t o  a i r  aga in  when, a f t e r  drying, they were 

t r anspor t ed  from t h e  glove box t o  t h e  f i r i n g  furnace.  
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E. Results 

1. Physical and Microstructural Features 

Samples were cha rac t e r i zed  with respect  t o  dens i ty  us ing  t h r e e  

techniques and i n  terms of phase content by X-ray d i f f r a c t i o n .  Dens i t i e s  

were determined by phys ica l  dimensions and weight, by immersion i n  water, 

and by microstructural  a n a l y s i s  using SEM and o p t i c a l  microscopy of both 

f r ac tu red  a n d  polished surfaces .  The r e s u l t s  are shown i n  Table 8. 

For temperatures up t o  2050”C,  d e n s i t i e s  increased with i n c r e s i n g  

maximum s i n t e r i n g  temperature. 

exh ib i t ed  a n  apparant decrease; however, w e  suspect t h e  accuracy of two of 

t h e  dens i ty  determinations. The bulk measurements (immersion and 

dimensional) included porous regions near t h e  samples’ su r f aces  thus  t h e  

apparent d e n s i t i e s  were probably lower than t h e  true values.  Also, t h e  

polished 2100°C sample contained many pull-outs which were counted as pores ,  

t hus  t h e  apparent dens i ty  w a s  lower than true. 

exhibi ted a n  i n i t i a l  decrease i n  d i a m e t e r  followed by an apparent increase.  

I n  p a r t  t h i s  increase is  t h e  r e s u l t  of counting t h e  pul l -outs  as pores.  

The average dens i ty  of t h e  2100°C sample 

Pore diameters a l s o  

When p l o t t e d  as an Arrhenius func t ion ,  t h e  l i n e a r  shr inkage shown i n  

This Figure 25 exh ib i t s  a n  apparent a c t i v a t i o n  energy of -120 kcal/mole. 

value nominally corresponds t o  t h e  a c t i v a t i o n  energy reported f o r  carbon 

d i f fus ion  through SIC g r a i n  boundaries .4 

were conducted; however, t h e  i n f e r r e d  rate c o n t r o l l i n g  mechanism appears 

reasonable. 

No d e t a i l e d  mechanistic s t u d i e s  

The s i n t e r e d  S i c  remained 100% phase up t o  a s i n t e r i n g  temperature of 

2050°C. 

B phases. 

s t a b i l i t y  f o r  most a p p l i c a t i o n s  considered appropr i a t e  f o r  S i c .  

The 2100°C sample contained approximately equal  f r a c t i o n s  of a and 

These resu l t s  show t h a t  t h e  s i n t e r e d  material has adequate phase 
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Figure 25. Arrhenius p l o t  of f r a c t i o n a l  d e n s i f i c a t i o n  versus abso lu te  
temperature observed f o r  B doped laser synthesized S ic .  The 
ac t iva t ion  energy is approximately 120 kcal/mole. 

The g ra in  s i z e  and morphology changed cont inuously with inc reas ing  

f i r i n g  temperature. 

average g r a i n  s i z e  had a l ready  increased t o  approximately 0.3 rn from t h e  

s t a r t i n g  dimension of -0.1 vm. 

a c t u a l  because it was d i f f i c u l t  t o  reso lve  ind iv idua l  g ra in  boundaries 

wi th in  -0.6 m c l u s t e r s  which were counted as ind iv idua l  g ra ins .  Many 0.1- 

0.15 vm g ra ins  were observed in t h e  l9OO"C sample. 

cons iderable  coalescence of t h e  p a r t i c l e s  i n t o  elongated grains similar t o  

those  reported by Sa t0  e t  a146 (Figure 26). 

p r e f e r e n t i a l  growth of B S i c  g ra ins  t o  a co inc iden ta l  alignment of 

c r y s t a l l i n e  l a t t i c e s  between adjacent  g ra ins .  Ind iv idua l ,  small diameter,  

equ iax ia l  g ra ins  s t i l l  remain a f t e r  f i r i n g  a t  1950°C. With 2050°C f i r i n g ,  

t h e  microstructure  appears t o  be made up completely of high a spec t - r a t io  

A t  t h e  lowest temperature examined ( l g O O " C ) ,  t h e  

This dimension m y  be somewhat higher  than  

By 1350"C, t h e r e  w a s  

They a t t r i b u t e d  t h i s  

6 4  



ORIGINAL PAGE IS 
OF POOR QUALITY 

* 

Figure 26. SEM of B doped S i c  sample s in t e red  at 1950°C f o r  1 h r  i n  A r .  
Magnification 92OOX.  

Figure 27. Opt ica l  photomicrograph of B doped S i c  sample s i n t e r e d  a t  2050°C 
f o r  1 h r  i n  A r .  Magnification 1 O O O X .  
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c y l i n d r i c a l  B gra ins  approximately 1.2 pm i n  diameter a n d  20 wn long (F igure  

27).  Pores a r e  confined t o  g ra in  boundaries.  

S i c  a t  2100"C, equiaxed g r a i n s  grow t o  100 m; pores  are uniformly 

d i s t r i b u t e d  throughout t h e  grains. 

With p a r t i a l  conversion t o  a 

It is evident tha t  cons iderable  maps-transport occurred i n  t h e  1900- 

1950°C temperature range. 

numbers made poss ib le  w i t h  improved d i spe r s ion  and p res s ing  techniques  

should permit s i n t e r i n g  temperatures  t o  be reduced t o  t h i s  temperature  

range. 

temperatures  above 4 0 5 0 ° C .  

We be l i eve  t h a t  h igher ,  more uniform coord ina t ion  

The gra in  growth mechanisms must be suppressed t o  permit s e r v i c e  

2. Mechanical Properties 

Room temperature s t r e n g t h s ,  hardness and f r a c t u r e  toughness 

cha rac t e r i za t ions  were made f o r  t h e  2050°C samples. 

i n  b i a x i a l  t ens ion  us ing  t h e  ball-on-ring procedure.  

toughness were measured us ing  a Vickers indentor .  

S t r eng ths  were measured 

Hardness  and f r a c t u r e  

The ball-on-ring t e s t  w a s  used t o  e l imina te  spurious edge e f f e c t s .  An 

apparatus  based on t h e  design by Wachtman e t  a14' w a s  used i n  conjunct ion 

w i t h  a n  Ins t ron  Corp. u n i v e r s a l  t e s t i n g  machine. 

6.35 mm. The samples were t e s t e d  us ing  a fast crosshead speed 

(0.05 cm/min) . Frac tu re  s t r eng th ,  u w a s  c a l c u l a t e d  * from: 

The b a l l  diameter w a s  

fY 

3P( 1+ v) a (I-V) b 2  a2 

f 4 n t 2  b (l+v) 2a2 ~2 
a =  [1+21n - + - (1 - -->(->I, 

where P = f r a c t u r e  load ,  v = Poisson 's  r a t i o  ( taken  t o  be 0.25), t = sample 

th ickness  = 1 mm, R = sample rad ius  = 6.35 mm, a = load  support  r i n g  

r ad ius  = 6.27 mm and b = b a l l  contac t  rad ius  ( t aken  t o  be 0.333 mm = t / 3 ) *  
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The r e s u l t s  of t h e  s t rength  measurements w i t h  t h e  2050°C S i c  samples 

are included i n  Table 8. Although t h e  samples a r e  far from opt imal ,  t h e  

observed average s t r e n g t h  (645 MPa, 93,500 p s i )  is  approximately 2 times 

s t r e n g t h s  normally observed f o r  s i n t e r e d  s i l i c o n  carb ide4  

t y p i c a l  of hot pressed o r  HIPed S i c .  

r e s u l t  from t h e  uniformly d i s t r i b u t e d ,  small diameter pores made p o s s i b l e  

with t h e s e  i d e a l  S i c  powders a n d  t h e  pos t - synthes is  processing procedures 

t h a t  were developed. Further  opt imizat ion of t h e  f i r i n g  schedule can be 

expected t o  r e s u l t  i n  higher  d e n s i t i e s ,  smaller pores  and less grain growth; 

a l l  of these should r e s u l t  i n  f u r t h e r  improvements i n  i n t r i n s i c  s t r e n g t h  

l e v e l s .  

can be expected t o  dominate observed s t r e n g t h s  at t h i s  s t r e n g t h  l e v e l  i f  

f i n i s h i n g  ope ra t ions  a r e  not done w i t h  g r e a t  c a r e  as w a s  observed with laser 

synthes ized  r eac t ion  bonded s i l i c o n  n i t r i d e .  

and are more 

The improved s t r e n g t h  values  probably 

It should be noted t h a t  su r f ace  f i n i s h  and r e l a t e d  machining f l a w s  

Vickers hardness values  were determined on pol i shed  su r faces  us ing  300 

and 500 gram loads.  

t y p i c a l  of hot pressed r a t h e r  than s i n t e r e d  Sic. W e  presume t h a t  t h e  

hardness  and s t r e n g t h  values  are coupled, although t h e r e  is no formal theory  

t o  relate t h e  t w o  p r o p e r t i e s  i n  a b r i t t l e  material as ex is t s  f o r  d u c t i l e  

materials. 

The observed values  of 2430 kg mm’* are a l s o  more 

Frac ture  toughness values  could not be measured on t h i s  ma te r i a l  u s ing  

t h e  inden ta t ion  technique. Normally with inc reas ing  loads,  stable cracks 

o r i g i n a t e  from t h e  corners  of indention; t h e  crack dimensions a r e  used t o  

c a l c u l a t e  t h e  K,, values .  S tab le  cracks d id  not form i n  t h i s  SIC material. 
1L 

Suddenly wi th  inc reas ing  load ,  cracks 

through t h e  samples . Simi lar  r e s u l t s  

g r a i n  s i z e  sic. 51,52 

formed and propagated completely 

have been observed with o t h e r  f i n e  
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VII. SUMMARY AND COHCLUSIOIS 

This  research program has focused on t h e  processing-microstructure- 

property paradigm f i r s t  proposed by MIT. 

highly p e r f e c t  powders and ca re fu l .pos t - syn thes i s  processing s t e p s  w i l l  it 

be poss ib le  t o  achieve uniform, defec t - f ree  micros t ruc tures  and t h e  proper ty  

improvements t h a t  a r e  c r i t i c a l  f o r  many high performance app l i ca t ions .  

S p e c i f i c  i s s u e s  addressed i n  t h i s  program have been t h e  syn thes i s  of S i c  

powders, t h e i r  d i spers ion ,  t h e i r  shaping i n t o  high q u a l i t y  green p a r t s ,  

consol ida t ion  of t h e  green p a r t s  i n t o  dense bodies ,  and t h e  eva lua t ion  of 

O n l y  through t h e  use  of both 

r e s u l t i n g  proper t ies .  

Powder synthes is  research began from success fu l  demonstration of t h e  

f e a s i b i l i t y  of making S i c  powders from l a s e r  heated SiH, and e i t h e r  C2H4 o r  

CH, gases. 

diameters from 100-300 A t o  nominally 1000 A while  r e t a i n i n g  t h e  o t h e r  

requi red  c h a r a c t e r i s t i c s  (uniform p a r t i c l e  s i z e ,  freedom from agglomerates,  

p u r i t y  and  shape) .  

nucleat ion and growth model w e  had used t o  desc r ibe  t h e  process  d id  not i n  

f a c t  apply;  r a t h e r ,  p a r t i c l e s  formed by a two s t e p  r eac t ion  t h a t  involved 

c o l l i s i o n  and coalescence of molten s i l i c o n  p a r t i c l e s  p r i o r  t o  t h e  onse t  of 

t h e  carbur iza t ion  r eac t ion .  With t h i s  understanding,  it w a s  p o s s i b l e  t o  

inc rease  t h e  p a r t i c l e  diameter t o  t h e  des i r ed  range. 

of r eac t ion  requi res  a p rec i se  combination of exposure times, temperature  

g rad ien t s  and reac tan ts .  

s t ra ight forward  manner with t h e  l a s e r  heated gas  phase powder syn thes i s  

The p r i n c i p a l  t e c h n i c a l  o b j e c t i v e  w a s  t o  i nc rease  p a r i c l e  

I n  t h e  course of t h i s  r e se rch ,  we found t h a t  t h e  

Cont ro l l ing  t h i s  type  

For tuna te ly ,  t h e s e  are achieved i n  a 

process.  
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New d i spe r s ion  techniques were requi red  f o r  t h e s e  l a s e r  synthes ized  S ic  

powders because t h e i r  su r f aces  a re  fundamentally d i f f e r e n t  from a l l  Sic 

powders t h a t  have experienced an exposure t o  a i r  o r  water. 

anhydrous processing condi t ions  were used throughout.  Both pure so lven t  and 

s t e r r i c  s t a b l i z e d  d i spe r s ion  techniques were inves t iga t ed .  It w a s  f e l t  t h a t  

t h e  pure so lvent  systems would be e a s i e r  t o  dry and would leave  less re s idue  

than t h e  s t e r i c  systems, but  they probably would n o t  be capable  of achiev ing  

h ighly  stable,  high dens i ty  dispers ions.  

Anerobic, 

S u i t a b l e  pure so lven t  ( o l e i c  a c i d )  and steric s t a b i l i z e d  systems 

(Oloa/hexane) systems were i d e n t i f i e d  f o r  the high p u r i t y ,  laser 

synthesized powders. Considerable v a r i a t i o n  i n  t he  packing d e n s i t i e s  was 

observed between p a r t s  made from d i f f e r e n t  powder l o t s  having similar 

phys ica l  and chemical c h a r a c t e r i s t i c s  . It i s  be l ieved  tha t  these 

d i f f e rences  r e s u l t  from varying degrees of agglomeration. 

Green p a r t s  were made by c e n t r i f u g a l  sedimentation and by c o l l o i d a l  

press ing .  Both techniques produced uniform p a r t s  tha t  were free of l a r g e  

defec ts .  The c o l l o i d a l  press ing  technique y i e lded  h igher  d e n s i t i e s .  Two 

s t a g e s  of p re s s ing  were modeled: l i q u i d  i s  first extruded through a 

progress ive ly  t h i c k e r  cake, then higher  d e n s i t i e s  are made p o s s i b l e  w i t h  

p a r t i c l e  rearrangement accompanying inc reas ing  pressure.  Dens i t i e s  

corresponding t o  a random c l o s e  packed s t r u c t u r e  (-63.5%) were achieved;  

t h i s  is t h e  h ighes t  poss ib l e  densi ty  f o r  non-ordered, uniform-diameter 

spheres .  

A f t e r  drying,  the p a r t s  were d e n s i f i e d  for 1 hour at  temperatures  

ranging form 1800 t o  2100°C. Densi t ies  increased progress ive ly  w i t h  

temperature  up t o  97.5% a t  2050°C. 

2100°C sample may be real because of pore entrapment behind g r a i n  boundaries 

The lower dens i ty  exh ib i t ed  by t h e  
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o r  may be a r t i f i c i a l  due t o  pul l -outs  a n d  o t h e r  measurement e r r o r s .  G r a i n  

s i z e s  increased  with f i r i n g  temperatures.  Judging by t h e  observed g r a i n  

growth, t h e  optimum f i r i n g  temperature w i l l  probably be s u b s t a n t i a l l y  below 

2050 "C. 

Even without opt imizat ion,  t h e  p rope r t i e s  of t h e  r e s u l t i n g  p a r t s  were 

exce l l en t .  Dens i t ies  were high (up  t o  97.5%) and res idua l  po ros i ty  w a s  

genera l ly  d i s t r i b u t e d  uniformly throughout t h e  p a r t s  i n  small diameter 

pores.  The g ra in  s i z e  and shape changed s u b s t a n t i a l l y  during t h e  evolu t ion  

of t h e  micros t ruc tures ;  B gra ins  became progress ive ly  elongated and l a r g e r  

wi th  i nc reas ing  f i r i n g  temperatures  up t o  2050°C. A t  2100"C, they 

transformed t o  much l a r g e r  equ iax ia l  a and B gra ins  wi th  entrapped pores .  

The b i a x i a l  t e n s i l e  s t r eng ths  of t h e  2050°C p a r t s  were a l s o  exce l l en t .  

The  s t r e n g t h s  (up t o  714 MPa, 103,500 p s i )  a r e  twice l e v e l s  nominally 

observed f o r  s i n t e r e d  S i c  and  a r e  more t y p i c a l  of hot  pressed SIC. Hardness 

values  (2430 kg/mm2) were a l s o  more t y p i c a l  of hot  pressed  than s i n t e r e d  

Sic.  Both r e s u l t  from t h e  absence of l a r g e  de fec t s  and t h e  confinement of 

r e s i d u a l  p o r o s i t y  t o  small diameter,  uniformly d i s t r i b u t e d  pores.  F rac tu re  

toughness values  could not be measured by t h e  inden ta t ion  technique because 

s t a b l e  cracks d id  not form; when cracks  were induced they  propagated t o  t h e  

samples' boundaries. 

T h i s  research  program accomplished a l l  of i t s  ma,jor ob jec t ives .  

Broadly, t h e  o v e r a l l  goa l  w a s  t o  demonstrate t h a t  supe r io r  micros t ruc tures  

and p r o p e r t i e s  could be achieved by using both powders having i d e a l  

c h a r a c t e r i s t i c s  and  very s p e c i f i c  post-synthesis  processing procedures.  

This  w a s  accomplished. I n  achieving t h i s  ob jec t ive ,  s e v e r a l  narrower 

t e c h n i c a l  i s sues  were resolved.  These included f ind ing  means t o  make t h e  

powders, d i s p e r s e  t h e  powders, shape t h e  powders i n t o  high-density flaw-free 

c 

. 



p a r t s ,  dry t h e  p a r t s  and densify t h e  p a r t s .  While s u p e r i o r  p r o p e r t i e s  and 

both reduced d e n s i f i c a t i o n  times and  temperatures  were denonstrated,  t h e s e  

r e s u l t s  do not represent  fully optimized process  condi t ions  o r  maximum 

property values .  Fu r the r  improvements can be an t i c ipa t ed .  
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